Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr532..
/
b51aa..
PUgiH..
/
0484b..
vout
Pr532..
/
5f420..
0.10 bars
TMbJk..
/
0bcd4..
ownership of
704f8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSP9..
/
fd39e..
ownership of
0f763..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKpW..
/
8f158..
ownership of
f8d55..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFsN..
/
944b2..
ownership of
db782..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFob..
/
de262..
ownership of
272ef..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRpn..
/
02387..
ownership of
9d17f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUZE..
/
957d7..
ownership of
f3d61..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPdv..
/
0a2f8..
ownership of
68dd8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVYQ..
/
74dc1..
ownership of
efb84..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXTB..
/
c0eae..
ownership of
2b227..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcsM..
/
fe068..
ownership of
6be1b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHFm..
/
f2652..
ownership of
261b7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJ6X..
/
8df24..
ownership of
00cb5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKoT..
/
d474d..
ownership of
bc972..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRoS..
/
e66f0..
ownership of
f422b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdKv..
/
dea62..
ownership of
35f81..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaHX..
/
16e0d..
ownership of
3c6cd..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcr8..
/
02844..
ownership of
234ed..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNHX..
/
5afe8..
ownership of
8c92d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbkt..
/
aa32c..
ownership of
6c7e0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZou..
/
717db..
ownership of
3f678..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQ6v..
/
22b6a..
ownership of
6bd66..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbRe..
/
0b389..
ownership of
f3d79..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZCV..
/
5ad9f..
ownership of
cfe77..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMExY..
/
8de36..
ownership of
0035a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXyq..
/
edbad..
ownership of
a6cd0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQRB..
/
944aa..
ownership of
437cc..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHwQ..
/
af859..
ownership of
fe736..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPZz..
/
3ba25..
ownership of
999ef..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMX4..
/
f4949..
ownership of
6e8c6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNVn..
/
f331e..
ownership of
e0188..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMH7Y..
/
d7b5c..
ownership of
aff18..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNdr..
/
77f4b..
ownership of
67c52..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaPY..
/
5ae99..
ownership of
e1442..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUeN..
/
3639d..
ownership of
6f6cd..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMEzs..
/
beeaa..
ownership of
20255..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUVMh..
/
7153f..
doc published by
PrCmT..
Known
ax_hfvadd__ax_hvcom__ax_hvass__ax_hv0cl__ax_hvaddid__ax_hfvmul__ax_hvmulid__ax_hvmulass__ax_hvdistr1__ax_hvdistr2__ax_hvmul0__ax_hfi__ax_his1__ax_his2__ax_his3__ax_his4__ax_hcompl__df_sh
:
∀ x0 : ο .
(
wf
(
cxp
chil
chil
)
chil
cva
⟶
(
∀ x1 x2 :
ι → ο
.
wa
(
wcel
x1
chil
)
(
wcel
x2
chil
)
⟶
wceq
(
co
x1
x2
cva
)
(
co
x2
x1
cva
)
)
⟶
(
∀ x1 x2 x3 :
ι → ο
.
w3a
(
wcel
x1
chil
)
(
wcel
x2
chil
)
(
wcel
x3
chil
)
⟶
wceq
(
co
(
co
x1
x2
cva
)
x3
cva
)
(
co
x1
(
co
x2
x3
cva
)
cva
)
)
⟶
wcel
c0v
chil
⟶
(
∀ x1 :
ι → ο
.
wcel
x1
chil
⟶
wceq
(
co
x1
c0v
cva
)
x1
)
⟶
wf
(
cxp
cc
chil
)
chil
csm
⟶
(
∀ x1 :
ι → ο
.
wcel
x1
chil
⟶
wceq
(
co
c1
x1
csm
)
x1
)
⟶
(
∀ x1 x2 x3 :
ι → ο
.
w3a
(
wcel
x1
cc
)
(
wcel
x2
cc
)
(
wcel
x3
chil
)
⟶
wceq
(
co
(
co
x1
x2
cmul
)
x3
csm
)
(
co
x1
(
co
x2
x3
csm
)
csm
)
)
⟶
(
∀ x1 x2 x3 :
ι → ο
.
w3a
(
wcel
x1
cc
)
(
wcel
x2
chil
)
(
wcel
x3
chil
)
⟶
wceq
(
co
x1
(
co
x2
x3
cva
)
csm
)
(
co
(
co
x1
x2
csm
)
(
co
x1
x3
csm
)
cva
)
)
⟶
(
∀ x1 x2 x3 :
ι → ο
.
w3a
(
wcel
x1
cc
)
(
wcel
x2
cc
)
(
wcel
x3
chil
)
⟶
wceq
(
co
(
co
x1
x2
caddc
)
x3
csm
)
(
co
(
co
x1
x3
csm
)
(
co
x2
x3
csm
)
cva
)
)
⟶
(
∀ x1 :
ι → ο
.
wcel
x1
chil
⟶
wceq
(
co
cc0
x1
csm
)
c0v
)
⟶
wf
(
cxp
chil
chil
)
cc
csp
⟶
(
∀ x1 x2 :
ι → ο
.
wa
(
wcel
x1
chil
)
(
wcel
x2
chil
)
⟶
wceq
(
co
x1
x2
csp
)
(
cfv
(
co
x2
x1
csp
)
ccj
)
)
⟶
(
∀ x1 x2 x3 :
ι → ο
.
w3a
(
wcel
x1
chil
)
(
wcel
x2
chil
)
(
wcel
x3
chil
)
⟶
wceq
(
co
(
co
x1
x2
cva
)
x3
csp
)
(
co
(
co
x1
x3
csp
)
(
co
x2
x3
csp
)
caddc
)
)
⟶
(
∀ x1 x2 x3 :
ι → ο
.
w3a
(
wcel
x1
cc
)
(
wcel
x2
chil
)
(
wcel
x3
chil
)
⟶
wceq
(
co
(
co
x1
x2
csm
)
x3
csp
)
(
co
x1
(
co
x2
x3
csp
)
cmul
)
)
⟶
(
∀ x1 :
ι → ο
.
wa
(
wcel
x1
chil
)
(
wne
x1
c0v
)
⟶
wbr
cc0
(
co
x1
x1
csp
)
clt
)
⟶
(
∀ x1 :
ι → ο
.
wcel
x1
ccau
⟶
wrex
(
λ x2 .
wbr
x1
(
cv
x2
)
chli
)
(
λ x2 .
chil
)
)
⟶
wceq
csh
(
crab
(
λ x1 .
w3a
(
wcel
c0v
(
cv
x1
)
)
(
wss
(
cima
cva
(
cxp
(
cv
x1
)
(
cv
x1
)
)
)
(
cv
x1
)
)
(
wss
(
cima
csm
(
cxp
cc
(
cv
x1
)
)
)
(
cv
x1
)
)
)
(
λ x1 .
cpw
chil
)
)
⟶
x0
)
⟶
x0
Theorem
ax_hfvadd
:
wf
(
cxp
chil
chil
)
chil
cva
(proof)
Theorem
ax_hvcom
:
∀ x0 x1 :
ι → ο
.
wa
(
wcel
x0
chil
)
(
wcel
x1
chil
)
⟶
wceq
(
co
x0
x1
cva
)
(
co
x1
x0
cva
)
(proof)
Theorem
ax_hvass
:
∀ x0 x1 x2 :
ι → ο
.
w3a
(
wcel
x0
chil
)
(
wcel
x1
chil
)
(
wcel
x2
chil
)
⟶
wceq
(
co
(
co
x0
x1
cva
)
x2
cva
)
(
co
x0
(
co
x1
x2
cva
)
cva
)
(proof)
Theorem
ax_hv0cl
:
wcel
c0v
chil
(proof)
Theorem
ax_hvaddid
:
∀ x0 :
ι → ο
.
wcel
x0
chil
⟶
wceq
(
co
x0
c0v
cva
)
x0
(proof)
Theorem
ax_hfvmul
:
wf
(
cxp
cc
chil
)
chil
csm
(proof)
Theorem
ax_hvmulid
:
∀ x0 :
ι → ο
.
wcel
x0
chil
⟶
wceq
(
co
c1
x0
csm
)
x0
(proof)
Theorem
ax_hvmulass
:
∀ x0 x1 x2 :
ι → ο
.
w3a
(
wcel
x0
cc
)
(
wcel
x1
cc
)
(
wcel
x2
chil
)
⟶
wceq
(
co
(
co
x0
x1
cmul
)
x2
csm
)
(
co
x0
(
co
x1
x2
csm
)
csm
)
(proof)
Theorem
ax_hvdistr1
:
∀ x0 x1 x2 :
ι → ο
.
w3a
(
wcel
x0
cc
)
(
wcel
x1
chil
)
(
wcel
x2
chil
)
⟶
wceq
(
co
x0
(
co
x1
x2
cva
)
csm
)
(
co
(
co
x0
x1
csm
)
(
co
x0
x2
csm
)
cva
)
(proof)
Theorem
ax_hvdistr2
:
∀ x0 x1 x2 :
ι → ο
.
w3a
(
wcel
x0
cc
)
(
wcel
x1
cc
)
(
wcel
x2
chil
)
⟶
wceq
(
co
(
co
x0
x1
caddc
)
x2
csm
)
(
co
(
co
x0
x2
csm
)
(
co
x1
x2
csm
)
cva
)
(proof)
Theorem
ax_hvmul0
:
∀ x0 :
ι → ο
.
wcel
x0
chil
⟶
wceq
(
co
cc0
x0
csm
)
c0v
(proof)
Theorem
ax_hfi
:
wf
(
cxp
chil
chil
)
cc
csp
(proof)
Theorem
ax_his1
:
∀ x0 x1 :
ι → ο
.
wa
(
wcel
x0
chil
)
(
wcel
x1
chil
)
⟶
wceq
(
co
x0
x1
csp
)
(
cfv
(
co
x1
x0
csp
)
ccj
)
(proof)
Theorem
ax_his2
:
∀ x0 x1 x2 :
ι → ο
.
w3a
(
wcel
x0
chil
)
(
wcel
x1
chil
)
(
wcel
x2
chil
)
⟶
wceq
(
co
(
co
x0
x1
cva
)
x2
csp
)
(
co
(
co
x0
x2
csp
)
(
co
x1
x2
csp
)
caddc
)
(proof)
Theorem
ax_his3
:
∀ x0 x1 x2 :
ι → ο
.
w3a
(
wcel
x0
cc
)
(
wcel
x1
chil
)
(
wcel
x2
chil
)
⟶
wceq
(
co
(
co
x0
x1
csm
)
x2
csp
)
(
co
x0
(
co
x1
x2
csp
)
cmul
)
(proof)
Theorem
ax_his4
:
∀ x0 :
ι → ο
.
wa
(
wcel
x0
chil
)
(
wne
x0
c0v
)
⟶
wbr
cc0
(
co
x0
x0
csp
)
clt
(proof)
Theorem
ax_hcompl
:
∀ x0 :
ι → ο
.
wcel
x0
ccau
⟶
wrex
(
λ x1 .
wbr
x0
(
cv
x1
)
chli
)
(
λ x1 .
chil
)
(proof)
Theorem
df_sh
:
wceq
csh
(
crab
(
λ x0 .
w3a
(
wcel
c0v
(
cv
x0
)
)
(
wss
(
cima
cva
(
cxp
(
cv
x0
)
(
cv
x0
)
)
)
(
cv
x0
)
)
(
wss
(
cima
csm
(
cxp
cc
(
cv
x0
)
)
)
(
cv
x0
)
)
)
(
λ x0 .
cpw
chil
)
)
(proof)