Search for blocks/addresses/...

Proofgold Proposition

∀ x0 : ο . (wceq ctayl (cmpt2 (λ x1 x2 . cpr cr cc) (λ x1 x2 . co cc (cv x1) cpm) (λ x1 x2 . cmpt2 (λ x3 x4 . cun cn0 (csn cpnf)) (λ x3 x4 . ciin (λ x5 . cin (co cc0 (cv x3) cicc) cz) (λ x5 . cdm (cfv (cv x5) (co (cv x1) (cv x2) cdvn)))) (λ x3 x4 . ciun (λ x5 . cc) (λ x5 . cxp (csn (cv x5)) (co ccnfld (cmpt (λ x6 . cin (co cc0 (cv x3) cicc) cz) (λ x6 . co (co (cfv (cv x4) (cfv (cv x6) (co (cv x1) (cv x2) cdvn))) (cfv (cv x6) cfa) cdiv) (co (co (cv x5) (cv x4) cmin) (cv x6) cexp) cmul)) ctsu)))))wceq cana (cmpt (λ x1 . cpr cr cc) (λ x1 . crab (λ x2 . wral (λ x3 . wcel (cv x3) (cfv (cdm (cin (cv x2) (co cpnf (cv x3) (co (cv x1) (cv x2) ctayl)))) (cfv (co (cfv ccnfld ctopn) (cv x1) crest) cnt))) (λ x3 . cdm (cv x2))) (λ x2 . co cc (cv x1) cpm)))wceq culm (cmpt (λ x1 . cvv) (λ x1 . copab (λ x2 x3 . wrex (λ x4 . w3a (wf (cfv (cv x4) cuz) (co cc (cv x1) cmap) (cv x2)) (wf (cv x1) cc (cv x3)) (wral (λ x5 . wrex (λ x6 . wral (λ x7 . wral (λ x8 . wbr (cfv (co (cfv (cv x8) (cfv (cv x7) (cv x2))) (cfv (cv x8) (cv x3)) cmin) cabs) (cv x5) clt) (λ x8 . cv x1)) (λ x7 . cfv (cv x6) cuz)) (λ x6 . cfv (cv x4) cuz)) (λ x5 . crp))) (λ x4 . cz))))wceq clog (ccnv (cres ce (cima (ccnv cim) (co (cneg cpi) cpi cioc))))wceq ccxp (cmpt2 (λ x1 x2 . cc) (λ x1 x2 . cc) (λ x1 x2 . cif (wceq (cv x1) cc0) (cif (wceq (cv x2) cc0) c1 cc0) (cfv (co (cv x2) (cfv (cv x1) clog) cmul) ce)))wceq clogb (cmpt2 (λ x1 x2 . cdif cc (cpr cc0 c1)) (λ x1 x2 . cdif cc (csn cc0)) (λ x1 x2 . co (cfv (cv x2) clog) (cfv (cv x1) clog) cdiv))wceq casin (cmpt (λ x1 . cc) (λ x1 . co (cneg ci) (cfv (co (co ci (cv x1) cmul) (cfv (co c1 (co (cv x1) c2 cexp) cmin) csqrt) caddc) clog) cmul))wceq cacos (cmpt (λ x1 . cc) (λ x1 . co (co cpi c2 cdiv) (cfv (cv x1) casin) cmin))wceq catan (cmpt (λ x1 . cdif cc (cpr (cneg ci) ci)) (λ x1 . co (co ci c2 cdiv) (co (cfv (co c1 (co ci (cv x1) cmul) cmin) clog) (cfv (co c1 (co ci (cv x1) cmul) caddc) clog) cmin) cmul))wceq carea (cmpt (λ x1 . crab (λ x2 . wa (wral (λ x3 . wcel (cima (cv x2) (csn (cv x3))) (cima (ccnv cvol) cr)) (λ x3 . cr)) (wcel (cmpt (λ x3 . cr) (λ x3 . cfv (cima (cv x2) (csn (cv x3))) cvol)) cibl)) (λ x2 . cpw (cxp cr cr))) (λ x1 . citg (λ x2 . cr) (λ x2 . cfv (cima (cv x1) (csn (cv x2))) cvol)))wceq cem (csu cn (λ x1 . co (co c1 (cv x1) cdiv) (cfv (co c1 (co c1 (cv x1) cdiv) caddc) clog) cmin))wceq czeta (crio (λ x1 . wral (λ x2 . wceq (co (co c1 (co c2 (co c1 (cv x2) cmin) ccxp) cmin) (cfv (cv x2) (cv x1)) cmul) (csu cn0 (λ x3 . co (csu (co cc0 (cv x3) cfz) (λ x4 . co (co (co (cneg c1) (cv x4) cexp) (co (cv x3) (cv x4) cbc) cmul) (co (co (cv x4) c1 caddc) (cv x2) ccxp) cmul)) (co c2 (co (cv x3) c1 caddc) cexp) cdiv))) (λ x2 . cdif cc (csn c1))) (λ x1 . co (cdif cc (csn c1)) cc ccncf))wceq clgam (cmpt (λ x1 . cdif cc (cdif cz cn)) (λ x1 . co (csu cn (λ x2 . co (co (cv x1) (cfv (co (co (cv x2) c1 caddc) (cv x2) cdiv) clog) cmul) (cfv (co (co (cv x1) (cv x2) cdiv) c1 caddc) clog) cmin)) (cfv (cv x1) clog) cmin))wceq cgam (ccom ce clgam)wceq cigam (cmpt (λ x1 . cc) (λ x1 . cif (wcel (cv x1) (cdif cz cn)) cc0 (co c1 (cfv (cv x1) cgam) cdiv)))wceq ccht (cmpt (λ x1 . cr) (λ x1 . csu (cin (co cc0 (cv x1) cicc) cprime) (λ x2 . cfv (cv x2) clog)))wceq cvma (cmpt (λ x1 . cn) (λ x1 . csb (crab (λ x2 . wbr (cv x2) (cv x1) cdvds) (λ x2 . cprime)) (λ x2 . cif (wceq (cfv (cv x2) chash) c1) (cfv (cuni (cv x2)) clog) cc0)))wceq cchp (cmpt (λ x1 . cr) (λ x1 . csu (co c1 (cfv (cv x1) cfl) cfz) (λ x2 . cfv (cv x2) cvma)))x0)x0
type
prop
theory
SetMM
name
df_tayl__df_ana__df_ulm__df_log__df_cxp__df_logb__df_asin__df_acos__df_atan__df_area__df_em__df_zeta__df_lgam__df_gam__df_igam__df_cht__df_vma__df_chp
proof
PUV1k..
Megalodon
-
proofgold address
TMPpr..
creator
36224 PrCmT../7e150..
owner
36224 PrCmT../7e150..
term root
4955a..