Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrHsm..
/
ec52a..
PUfmm..
/
0bf40..
vout
PrHsm..
/
48463..
0.00 bars
TMNeK..
/
de91c..
ownership of
0dc38..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMT4x..
/
56534..
ownership of
0ba02..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMUnY..
/
798f7..
ownership of
1e2c7..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMKts..
/
70ebb..
ownership of
c305b..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMQku..
/
84614..
ownership of
8b36f..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMSAm..
/
8635f..
ownership of
ba911..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMSQA..
/
d32d6..
ownership of
c5f24..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMHSp..
/
aa9ba..
ownership of
8eea9..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMNx4..
/
d023f..
ownership of
0881f..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMPA9..
/
1368a..
ownership of
a3a65..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMahF..
/
6f594..
ownership of
a82ff..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMQgk..
/
39332..
ownership of
b18ff..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMZLp..
/
8a381..
ownership of
c6ce9..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMdVz..
/
6c17f..
ownership of
eceb7..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMTEe..
/
652ee..
ownership of
a18d9..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
PURwt..
/
cdf88..
doc published by
Pr6Pc..
Definition
canonical_elt
canonical_elt
:=
λ x0 :
ι →
ι → ο
.
λ x1 .
prim0
(
x0
x1
)
Known
Eps_i_ax
Eps_i_ax
:
∀ x0 :
ι → ο
.
∀ x1 .
x0
x1
⟶
x0
(
prim0
x0
)
Theorem
canonical_elt_rel
canonical_elt_rel
:
∀ x0 :
ι →
ι → ο
.
∀ x1 .
x0
x1
x1
⟶
x0
x1
(
canonical_elt
x0
x1
)
(proof)
Param
per
per
:
(
ι
→
ι
→
ο
) →
ο
Known
pred_ext_2
pred_ext_2
:
∀ x0 x1 :
ι → ο
.
(
∀ x2 .
x0
x2
⟶
x1
x2
)
⟶
(
∀ x2 .
x1
x2
⟶
x0
x2
)
⟶
x0
=
x1
Known
per_stra1
per_stra1
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
∀ x1 x2 x3 .
x0
x2
x1
⟶
x0
x2
x3
⟶
x0
x1
x3
Definition
transitive
transitive
:=
λ x0 :
ι →
ι → ο
.
∀ x1 x2 x3 .
x0
x1
x2
⟶
x0
x2
x3
⟶
x0
x1
x3
Known
per_tra
per_tra
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
transitive
x0
Theorem
canonical_elt_eq
canonical_elt_eq
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
∀ x1 x2 .
x0
x1
x2
⟶
canonical_elt
x0
x1
=
canonical_elt
x0
x2
(proof)
Theorem
canonical_elt_idem
canonical_elt_idem
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
∀ x1 .
x0
x1
x1
⟶
canonical_elt
x0
x1
=
canonical_elt
x0
(
canonical_elt
x0
x1
)
(proof)
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
quotient
quotient
:=
λ x0 :
ι →
ι → ο
.
λ x1 .
and
(
x0
x1
x1
)
(
x1
=
canonical_elt
x0
x1
)
Known
andEL
andEL
:
∀ x0 x1 : ο .
and
x0
x1
⟶
x0
Theorem
quotient_prop1
quotient_prop1
:
∀ x0 :
ι →
ι → ο
.
∀ x1 .
quotient
x0
x1
⟶
x0
x1
x1
(proof)
Known
andER
andER
:
∀ x0 x1 : ο .
and
x0
x1
⟶
x1
Theorem
quotient_prop2
quotient_prop2
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
∀ x1 x2 .
quotient
x0
x1
⟶
quotient
x0
x2
⟶
x0
x1
x2
⟶
x1
=
x2
(proof)
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Definition
canonical_elt_def
canonical_elt_def
:=
λ x0 :
ι →
ι → ο
.
λ x1 :
ι → ι
.
λ x2 .
If_i
(
x0
x2
(
x1
x2
)
)
(
x1
x2
)
(
canonical_elt
x0
x2
)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
If_i_correct
If_i_correct
:
∀ x0 : ο .
∀ x1 x2 .
or
(
and
x0
(
If_i
x0
x1
x2
=
x1
)
)
(
and
(
not
x0
)
(
If_i
x0
x1
x2
=
x2
)
)
Theorem
canonical_elt_def_rel
canonical_elt_def_rel
:
∀ x0 :
ι →
ι → ο
.
∀ x1 :
ι → ι
.
∀ x2 .
x0
x2
x2
⟶
x0
x2
(
canonical_elt_def
x0
x1
x2
)
(proof)
Known
If_i_1
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Known
If_i_0
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Theorem
canonical_elt_def_eq
canonical_elt_def_eq
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
∀ x1 :
ι → ι
.
(
∀ x2 x3 .
x0
x2
x3
⟶
x1
x2
=
x1
x3
)
⟶
∀ x2 x3 .
x0
x2
x3
⟶
canonical_elt_def
x0
x1
x2
=
canonical_elt_def
x0
x1
x3
(proof)
Theorem
canonical_elt_def_idem
canonical_elt_def_idem
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
∀ x1 :
ι → ι
.
(
∀ x2 x3 .
x0
x2
x3
⟶
x1
x2
=
x1
x3
)
⟶
∀ x2 .
x0
x2
x2
⟶
canonical_elt_def
x0
x1
x2
=
canonical_elt_def
x0
x1
(
canonical_elt_def
x0
x1
x2
)
(proof)
Definition
quotient_def
quotient_def
:=
λ x0 :
ι →
ι → ο
.
λ x1 :
ι → ι
.
λ x2 .
and
(
x0
x2
x2
)
(
x2
=
canonical_elt_def
x0
x1
x2
)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
per_ref1
per_ref1
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
∀ x1 x2 .
x0
x1
x2
⟶
x0
x1
x1
Theorem
quotient_def_prop0
quotient_def_prop0
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
∀ x1 :
ι → ι
.
∀ x2 .
x0
x2
(
x1
x2
)
⟶
x2
=
x1
x2
⟶
quotient_def
x0
x1
x2
(proof)
Theorem
quotient_def_prop1
quotient_def_prop1
:
∀ x0 :
ι →
ι → ο
.
∀ x1 :
ι → ι
.
∀ x2 .
quotient_def
x0
x1
x2
⟶
x0
x2
x2
(proof)
Theorem
quotient_def_prop2
quotient_def_prop2
:
∀ x0 :
ι →
ι → ο
.
per
x0
⟶
∀ x1 :
ι → ι
.
(
∀ x2 x3 .
x0
x2
x3
⟶
x1
x2
=
x1
x3
)
⟶
∀ x2 x3 .
quotient_def
x0
x1
x2
⟶
quotient_def
x0
x1
x3
⟶
x0
x2
x3
⟶
x2
=
x3
(proof)