Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrHsm../ec52a..
PUfmm../0bf40..
vout
PrHsm../48463.. 0.00 bars
TMNeK../de91c.. ownership of 0dc38.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMT4x../56534.. ownership of 0ba02.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMUnY../798f7.. ownership of 1e2c7.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMKts../70ebb.. ownership of c305b.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMQku../84614.. ownership of 8b36f.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMSAm../8635f.. ownership of ba911.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMSQA../d32d6.. ownership of c5f24.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMHSp../aa9ba.. ownership of 8eea9.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMNx4../d023f.. ownership of 0881f.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMPA9../1368a.. ownership of a3a65.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMahF../6f594.. ownership of a82ff.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMQgk../39332.. ownership of b18ff.. as obj with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMZLp../8a381.. ownership of c6ce9.. as obj with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMdVz../6c17f.. ownership of eceb7.. as obj with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMTEe../652ee.. ownership of a18d9.. as obj with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
PURwt../cdf88.. doc published by Pr6Pc..
Definition canonical_eltcanonical_elt := λ x0 : ι → ι → ο . λ x1 . prim0 (x0 x1)
Known Eps_i_axEps_i_ax : ∀ x0 : ι → ο . ∀ x1 . x0 x1x0 (prim0 x0)
Theorem canonical_elt_relcanonical_elt_rel : ∀ x0 : ι → ι → ο . ∀ x1 . x0 x1 x1x0 x1 (canonical_elt x0 x1) (proof)
Param perper : (ιιο) → ο
Known pred_ext_2pred_ext_2 : ∀ x0 x1 : ι → ο . (∀ x2 . x0 x2x1 x2)(∀ x2 . x1 x2x0 x2)x0 = x1
Known per_stra1per_stra1 : ∀ x0 : ι → ι → ο . per x0∀ x1 x2 x3 . x0 x2 x1x0 x2 x3x0 x1 x3
Definition transitivetransitive := λ x0 : ι → ι → ο . ∀ x1 x2 x3 . x0 x1 x2x0 x2 x3x0 x1 x3
Known per_traper_tra : ∀ x0 : ι → ι → ο . per x0transitive x0
Theorem canonical_elt_eqcanonical_elt_eq : ∀ x0 : ι → ι → ο . per x0∀ x1 x2 . x0 x1 x2canonical_elt x0 x1 = canonical_elt x0 x2 (proof)
Theorem canonical_elt_idemcanonical_elt_idem : ∀ x0 : ι → ι → ο . per x0∀ x1 . x0 x1 x1canonical_elt x0 x1 = canonical_elt x0 (canonical_elt x0 x1) (proof)
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition quotientquotient := λ x0 : ι → ι → ο . λ x1 . and (x0 x1 x1) (x1 = canonical_elt x0 x1)
Known andELandEL : ∀ x0 x1 : ο . and x0 x1x0
Theorem quotient_prop1quotient_prop1 : ∀ x0 : ι → ι → ο . ∀ x1 . quotient x0 x1x0 x1 x1 (proof)
Known andERandER : ∀ x0 x1 : ο . and x0 x1x1
Theorem quotient_prop2quotient_prop2 : ∀ x0 : ι → ι → ο . per x0∀ x1 x2 . quotient x0 x1quotient x0 x2x0 x1 x2x1 = x2 (proof)
Param If_iIf_i : οιιι
Definition canonical_elt_defcanonical_elt_def := λ x0 : ι → ι → ο . λ x1 : ι → ι . λ x2 . If_i (x0 x2 (x1 x2)) (x1 x2) (canonical_elt x0 x2)
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Known If_i_correctIf_i_correct : ∀ x0 : ο . ∀ x1 x2 . or (and x0 (If_i x0 x1 x2 = x1)) (and (not x0) (If_i x0 x1 x2 = x2))
Theorem canonical_elt_def_relcanonical_elt_def_rel : ∀ x0 : ι → ι → ο . ∀ x1 : ι → ι . ∀ x2 . x0 x2 x2x0 x2 (canonical_elt_def x0 x1 x2) (proof)
Known If_i_1If_i_1 : ∀ x0 : ο . ∀ x1 x2 . x0If_i x0 x1 x2 = x1
Known If_i_0If_i_0 : ∀ x0 : ο . ∀ x1 x2 . not x0If_i x0 x1 x2 = x2
Theorem canonical_elt_def_eqcanonical_elt_def_eq : ∀ x0 : ι → ι → ο . per x0∀ x1 : ι → ι . (∀ x2 x3 . x0 x2 x3x1 x2 = x1 x3)∀ x2 x3 . x0 x2 x3canonical_elt_def x0 x1 x2 = canonical_elt_def x0 x1 x3 (proof)
Theorem canonical_elt_def_idemcanonical_elt_def_idem : ∀ x0 : ι → ι → ο . per x0∀ x1 : ι → ι . (∀ x2 x3 . x0 x2 x3x1 x2 = x1 x3)∀ x2 . x0 x2 x2canonical_elt_def x0 x1 x2 = canonical_elt_def x0 x1 (canonical_elt_def x0 x1 x2) (proof)
Definition quotient_defquotient_def := λ x0 : ι → ι → ο . λ x1 : ι → ι . λ x2 . and (x0 x2 x2) (x2 = canonical_elt_def x0 x1 x2)
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known per_ref1per_ref1 : ∀ x0 : ι → ι → ο . per x0∀ x1 x2 . x0 x1 x2x0 x1 x1
Theorem quotient_def_prop0quotient_def_prop0 : ∀ x0 : ι → ι → ο . per x0∀ x1 : ι → ι . ∀ x2 . x0 x2 (x1 x2)x2 = x1 x2quotient_def x0 x1 x2 (proof)
Theorem quotient_def_prop1quotient_def_prop1 : ∀ x0 : ι → ι → ο . ∀ x1 : ι → ι . ∀ x2 . quotient_def x0 x1 x2x0 x2 x2 (proof)
Theorem quotient_def_prop2quotient_def_prop2 : ∀ x0 : ι → ι → ο . per x0∀ x1 : ι → ι . (∀ x2 x3 . x0 x2 x3x1 x2 = x1 x3)∀ x2 x3 . quotient_def x0 x1 x2quotient_def x0 x1 x3x0 x2 x3x2 = x3 (proof)