∀ x0 : (ι → ι) → ι → ι → ι . ∀ x1 : (ι → ι → ι) → ι → ι . ∀ x2 : (ι → ((ι → ι) → ι → ι → ι) → ι) → ι → ((ι → ι) → ι) → ((ι → ι) → ι) → ι . ∀ x3 : (((ι → ι → ι) → ι → ι) → ι) → (ι → ((ι → ι) → ι → ι) → ι → ι) → ι → ι . (∀ x4 . ∀ x5 x6 x7 : ι → ι . x3 (λ x9 : (ι → ι → ι) → ι → ι . x2 (λ x10 . λ x11 : (ι → ι) → ι → ι → ι . setsum 0 0) 0 (λ x10 : ι → ι . x10 0) (λ x10 : ι → ι . x3 (λ x11 : (ι → ι → ι) → ι → ι . setsum (Inj1 0) (Inj0 0)) (λ x11 . λ x12 : (ι → ι) → ι → ι . λ x13 . setsum (x10 0) (setsum 0 0)) 0)) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 . x0 (λ x12 . Inj0 (x2 (λ x13 . λ x14 : (ι → ι) → ι → ι → ι . 0) (setsum 0 0) (λ x13 : ι → ι . 0) (λ x13 : ι → ι . x12))) (Inj0 (x10 (λ x12 . x0 (λ x13 . 0) 0 0) (x10 (λ x12 . 0) 0))) (setsum 0 (Inj1 (Inj1 0)))) (x7 (x7 (setsum (setsum 0 0) x4))) = x7 (Inj1 x4)) ⟶ (∀ x4 x5 x6 x7 . x3 (λ x9 : (ι → ι → ι) → ι → ι . x7) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 . 0) 0 = x7) ⟶ (∀ x4 : (((ι → ι) → ι) → ι) → ι . ∀ x5 . ∀ x6 : (((ι → ι) → ι → ι) → (ι → ι) → ι → ι) → (ι → ι) → (ι → ι) → ι . ∀ x7 . x2 (λ x9 . λ x10 : (ι → ι) → ι → ι → ι . setsum (Inj1 (x6 (λ x11 : (ι → ι) → ι → ι . λ x12 : ι → ι . λ x13 . x0 (λ x14 . 0) 0 0) (λ x11 . x7) (λ x11 . x2 (λ x12 . λ x13 : (ι → ι) → ι → ι → ι . 0) 0 (λ x12 : ι → ι . 0) (λ x12 : ι → ι . 0)))) (Inj0 (x1 (λ x11 x12 . x1 (λ x13 x14 . 0) 0) (setsum 0 0)))) (x4 (λ x9 : (ι → ι) → ι . setsum (x2 (λ x10 . λ x11 : (ι → ι) → ι → ι → ι . setsum 0 0) x5 (λ x10 : ι → ι . x7) (λ x10 : ι → ι . x7)) (Inj0 (x6 (λ x10 : (ι → ι) → ι → ι . λ x11 : ι → ι . λ x12 . 0) (λ x10 . 0) (λ x10 . 0))))) (λ x9 : ι → ι . 0) (λ x9 : ι → ι . x1 (λ x10 x11 . 0) x7) = setsum 0 (x6 (λ x9 : (ι → ι) → ι → ι . λ x10 : ι → ι . λ x11 . x9 (λ x12 . x3 (λ x13 : (ι → ι → ι) → ι → ι . x1 (λ x14 x15 . 0) 0) (λ x13 . λ x14 : (ι → ι) → ι → ι . λ x15 . x14 (λ x16 . 0) 0) (x3 (λ x13 : (ι → ι → ι) → ι → ι . 0) (λ x13 . λ x14 : (ι → ι) → ι → ι . λ x15 . 0) 0)) 0) (λ x9 . 0) (λ x9 . setsum (x3 (λ x10 : (ι → ι → ι) → ι → ι . x1 (λ x11 x12 . 0) 0) (λ x10 . λ x11 : (ι → ι) → ι → ι . λ x12 . x10) x9) (Inj0 (setsum 0 0))))) ⟶ (∀ x4 : ι → ι . ∀ x5 . ∀ x6 x7 : ι → ι . x2 (λ x9 . λ x10 : (ι → ι) → ι → ι → ι . x9) (x0 (λ x9 . Inj0 x5) x5 0) (λ x9 : ι → ι . x3 (λ x10 : (ι → ι → ι) → ι → ι . 0) (λ x10 . λ x11 : (ι → ι) → ι → ι . λ x12 . 0) 0) (λ x9 : ι → ι . x1 (λ x10 x11 . x10) (setsum 0 (setsum (x3 (λ x10 : (ι → ι → ι) → ι → ι . 0) (λ x10 . λ x11 : (ι → ι) → ι → ι . λ x12 . 0) 0) 0))) = setsum (x3 (λ x9 : (ι → ι → ι) → ι → ι . 0) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 . x3 (λ x12 : (ι → ι → ι) → ι → ι . x12 (λ x13 x14 . x0 (λ x15 . 0) 0 0) x9) (λ x12 . λ x13 : (ι → ι) → ι → ι . λ x14 . Inj0 (x13 (λ x15 . 0) 0)) x9) (x0 (λ x9 . x5) (x1 (λ x9 x10 . Inj0 0) (x7 0)) (x3 (λ x9 : (ι → ι → ι) → ι → ι . setsum 0 0) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 . x11) (x0 (λ x9 . 0) 0 0)))) 0) ⟶ (∀ x4 : ι → ι → ι . ∀ x5 x6 . ∀ x7 : (ι → ι → ι → ι) → ι . x1 (λ x9 x10 . 0) 0 = x5) ⟶ (∀ x4 : (ι → ι) → ι . ∀ x5 : ((ι → ι) → (ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . ∀ x6 . ∀ x7 : ((ι → ι) → (ι → ι) → ι) → (ι → ι → ι) → ι → ι → ι . x1 (λ x9 x10 . setsum 0 0) (x1 (λ x9 x10 . 0) (x3 (λ x9 : (ι → ι → ι) → ι → ι . 0) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 . 0) (x2 (λ x9 . λ x10 : (ι → ι) → ι → ι → ι . Inj1 0) 0 (λ x9 : ι → ι . x6) (λ x9 : ι → ι . Inj0 0)))) = setsum 0 (x4 (λ x9 . Inj0 (setsum x6 0)))) ⟶ (∀ x4 . ∀ x5 : (ι → ι → ι → ι) → ι . ∀ x6 : (((ι → ι) → ι → ι) → ι) → ι . ∀ x7 . x0 (λ x9 . x9) (x0 (λ x9 . x2 (λ x10 . λ x11 : (ι → ι) → ι → ι → ι . 0) (setsum 0 0) (λ x10 : ι → ι . Inj0 (x0 (λ x11 . 0) 0 0)) (λ x10 : ι → ι . 0)) (x6 (λ x9 : (ι → ι) → ι → ι . Inj1 (Inj1 0))) (setsum 0 (Inj0 0))) (x3 (λ x9 : (ι → ι → ι) → ι → ι . x7) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 . x2 (λ x12 . λ x13 : (ι → ι) → ι → ι → ι . 0) (setsum 0 (x3 (λ x12 : (ι → ι → ι) → ι → ι . 0) (λ x12 . λ x13 : (ι → ι) → ι → ι . λ x14 . 0) 0)) (λ x12 : ι → ι . Inj1 (setsum 0 0)) (λ x12 : ι → ι . setsum (x1 (λ x13 x14 . 0) 0) (x10 (λ x13 . 0) 0))) (Inj1 (Inj1 (setsum 0 0)))) = x3 (λ x9 : (ι → ι → ι) → ι → ι . x2 (λ x10 . λ x11 : (ι → ι) → ι → ι → ι . x7) 0 (λ x10 : ι → ι . x3 (λ x11 : (ι → ι → ι) → ι → ι . 0) (λ x11 . λ x12 : (ι → ι) → ι → ι . λ x13 . 0) (x10 (x3 (λ x11 : (ι → ι → ι) → ι → ι . 0) (λ x11 . λ x12 : (ι → ι) → ι → ι . λ x13 . 0) 0))) (λ x10 : ι → ι . x3 (λ x11 : (ι → ι → ι) → ι → ι . x10 (x3 (λ x12 : (ι → ι → ι) → ι → ι . 0) (λ x12 . λ x13 : (ι → ι) → ι → ι . λ x14 . 0) 0)) (λ x11 . λ x12 : (ι → ι) → ι → ι . λ x13 . x2 (λ x14 . λ x15 : (ι → ι) → ι → ι → ι . x3 (λ x16 : (ι → ι → ι) → ι → ι . 0) (λ x16 . λ x17 : (ι → ι) → ι → ι . λ x18 . 0) 0) (x12 (λ x14 . 0) 0) (λ x14 : ι → ι . x3 (λ x15 : (ι → ι → ι) → ι → ι . 0) (λ x15 . λ x16 : (ι → ι) → ι → ι . λ x17 . 0) 0) (λ x14 : ι → ι . Inj1 0)) (setsum (Inj0 0) 0))) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 . x9) (x3 (λ x9 : (ι → ι → ι) → ι → ι . x9 (λ x10 x11 . x3 (λ x12 : (ι → ι → ι) → ι → ι . 0) (λ x12 . λ x13 : (ι → ι) → ι → ι . λ x14 . x11) (Inj0 0)) (setsum 0 x7)) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 . 0) (x0 (λ x9 . Inj1 0) (x3 (λ x9 : (ι → ι → ι) → ι → ι . 0) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 . 0) (Inj1 0)) (Inj0 0)))) ⟶ (∀ x4 : (((ι → ι) → ι) → ι) → ι → ι . ∀ x5 : (ι → ι) → ((ι → ι) → ι → ι) → ι . ∀ x6 . ∀ x7 : (ι → ι) → (ι → ι → ι) → (ι → ι) → ι → ι . x0 (λ x9 . x6) (x4 (λ x9 : (ι → ι) → ι . 0) (setsum (x7 (λ x9 . x6) (λ x9 x10 . x1 (λ x11 x12 . 0) 0) (λ x9 . x5 (λ x10 . 0) (λ x10 : ι → ι . λ x11 . 0)) (x7 (λ x9 . 0) (λ x9 x10 . 0) (λ x9 . 0) 0)) 0)) (x3 (λ x9 : (ι → ι → ι) → ι → ι . 0) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 . 0) (x4 (λ x9 : (ι → ι) → ι . x2 (λ x10 . λ x11 : (ι → ι) → ι → ι → ι . Inj0 0) (x3 (λ x10 : (ι → ι → ι) → ι → ι . 0) (λ x10 . λ x11 : (ι → ι) → ι → ι . λ x12 . 0) 0) (λ x10 : ι → ι . Inj0 0) (λ x10 : ι → ι . 0)) (x4 (λ x9 : (ι → ι) → ι . x7 (λ x10 . 0) (λ x10 x11 . 0) (λ x10 . 0) 0) (x7 (λ x9 . 0) (λ x9 x10 . 0) (λ x9 . 0) 0)))) = Inj1 (x0 (λ x9 . x7 (λ x10 . Inj1 0) (λ x10 x11 . Inj1 0) (λ x10 . x7 (λ x11 . x7 (λ x12 . 0) (λ x12 x13 . 0) (λ x12 . 0) 0) (λ x11 x12 . Inj1 0) (λ x11 . 0) (x0 (λ x11 . 0) 0 0)) x6) (x0 (λ x9 . x7 (λ x10 . x9) (λ x10 x11 . x3 (λ x12 : (ι → ι → ι) → ι → ι . 0) (λ x12 . λ x13 : (ι → ι) → ι → ι . λ x14 . 0) 0) (λ x10 . setsum 0 0) (x3 (λ x10 : (ι → ι → ι) → ι → ι . 0) (λ x10 . λ x11 : (ι → ι) → ι → ι . λ x12 . 0) 0)) (x0 (λ x9 . 0) (setsum 0 0) 0) x6) 0)) ⟶ False |
|