Search for blocks/addresses/...

Proofgold Term Root Disambiguation

∀ x0 : (((ι → ι) → ι)ι → ι → (ι → ι) → ι)ι → (((ι → ι) → ι) → ι) → ι . ∀ x1 : (ι → ι)ι → ι → ι . ∀ x2 : (ι → ((ι → ι) → ι)((ι → ι)ι → ι)(ι → ι)ι → ι)(((ι → ι) → ι)ι → (ι → ι) → ι)ι → ι . ∀ x3 : ((ι → (ι → ι) → ι)ι → ι)(((ι → ι) → ι)ι → (ι → ι)ι → ι) → ι . (∀ x4 . ∀ x5 : ι → ι → ι → ι → ι . ∀ x6 . ∀ x7 : ι → ι . x3 (λ x9 : ι → (ι → ι) → ι . λ x10 . x1 (λ x11 . x9 0 (λ x12 . setsum 0 (x1 (λ x13 . 0) 0 0))) (x7 (x3 (λ x11 : ι → (ι → ι) → ι . λ x12 . x12) (λ x11 : (ι → ι) → ι . λ x12 . λ x13 : ι → ι . λ x14 . x1 (λ x15 . 0) 0 0))) (x3 (λ x11 : ι → (ι → ι) → ι . λ x12 . x0 (λ x13 : (ι → ι) → ι . λ x14 x15 . λ x16 : ι → ι . Inj0 0) (x2 (λ x13 . λ x14 : (ι → ι) → ι . λ x15 : (ι → ι)ι → ι . λ x16 : ι → ι . λ x17 . 0) (λ x13 : (ι → ι) → ι . λ x14 . λ x15 : ι → ι . 0) 0) (λ x13 : (ι → ι) → ι . x10)) (λ x11 : (ι → ι) → ι . λ x12 . λ x13 : ι → ι . λ x14 . 0))) (λ x9 : (ι → ι) → ι . λ x10 . λ x11 : ι → ι . λ x12 . 0) = setsum (x5 (x1 (λ x9 . x9) (Inj0 0) (x7 (x1 (λ x9 . 0) 0 0))) (setsum (x2 (λ x9 . λ x10 : (ι → ι) → ι . λ x11 : (ι → ι)ι → ι . λ x12 : ι → ι . λ x13 . x3 (λ x14 : ι → (ι → ι) → ι . λ x15 . 0) (λ x14 : (ι → ι) → ι . λ x15 . λ x16 : ι → ι . λ x17 . 0)) (λ x9 : (ι → ι) → ι . λ x10 . λ x11 : ι → ι . x9 (λ x12 . 0)) 0) (x5 0 0 0 (x7 0))) (Inj1 (x0 (λ x9 : (ι → ι) → ι . λ x10 x11 . λ x12 : ι → ι . x1 (λ x13 . 0) 0 0) x4 (λ x9 : (ι → ι) → ι . setsum 0 0))) (x0 (λ x9 : (ι → ι) → ι . λ x10 x11 . λ x12 : ι → ι . x12 (x3 (λ x13 : ι → (ι → ι) → ι . λ x14 . 0) (λ x13 : (ι → ι) → ι . λ x14 . λ x15 : ι → ι . λ x16 . 0))) x4 (λ x9 : (ι → ι) → ι . x7 (x3 (λ x10 : ι → (ι → ι) → ι . λ x11 . 0) (λ x10 : (ι → ι) → ι . λ x11 . λ x12 : ι → ι . λ x13 . 0))))) 0)(∀ x4 : ι → ι . ∀ x5 . ∀ x6 : ι → ι → ι . ∀ x7 : (ι → ι) → ι . x3 (λ x9 : ι → (ι → ι) → ι . λ x10 . setsum (x7 (λ x11 . x9 x10 (λ x12 . Inj0 0))) (setsum (x1 (λ x11 . 0) (Inj1 0) 0) 0)) (λ x9 : (ι → ι) → ι . λ x10 . λ x11 : ι → ι . Inj1) = setsum (x1 (λ x9 . x7 (λ x10 . Inj0 0)) (x6 0 (x4 0)) (x7 (λ x9 . x3 (λ x10 : ι → (ι → ι) → ι . λ x11 . 0) (λ x10 : (ι → ι) → ι . λ x11 . λ x12 : ι → ι . λ x13 . 0)))) (x0 (λ x9 : (ι → ι) → ι . λ x10 x11 . λ x12 : ι → ι . x10) (x0 (λ x9 : (ι → ι) → ι . λ x10 x11 . λ x12 : ι → ι . Inj0 (x3 (λ x13 : ι → (ι → ι) → ι . λ x14 . 0) (λ x13 : (ι → ι) → ι . λ x14 . λ x15 : ι → ι . λ x16 . 0))) (x7 (λ x9 . x7 (λ x10 . 0))) (λ x9 : (ι → ι) → ι . 0)) (λ x9 : (ι → ι) → ι . x0 (λ x10 : (ι → ι) → ι . λ x11 x12 . λ x13 : ι → ι . setsum (x0 (λ x14 : (ι → ι) → ι . λ x15 x16 . λ x17 : ι → ι . 0) 0 (λ x14 : (ι → ι) → ι . 0)) (x13 0)) 0 (λ x10 : (ι → ι) → ι . x10 (λ x11 . x0 (λ x12 : (ι → ι) → ι . λ x13 x14 . λ x15 : ι → ι . 0) 0 (λ x12 : (ι → ι) → ι . 0))))))(∀ x4 : ι → ι . ∀ x5 : ι → ι → ι . ∀ x6 : ι → ι . ∀ x7 : ι → ((ι → ι) → ι)ι → ι → ι . x2 (λ x9 . λ x10 : (ι → ι) → ι . λ x11 : (ι → ι)ι → ι . λ x12 : ι → ι . λ x13 . 0) (λ x9 : (ι → ι) → ι . λ x10 . λ x11 : ι → ι . x10) (setsum (Inj1 (x2 (λ x9 . λ x10 : (ι → ι) → ι . λ x11 : (ι → ι)ι → ι . λ x12 : ι → ι . λ x13 . 0) (λ x9 : (ι → ι) → ι . λ x10 . λ x11 : ι → ι . x3 (λ x12 : ι → (ι → ι) → ι . λ x13 . 0) (λ x12 : (ι → ι) → ι . λ x13 . λ x14 : ι → ι . λ x15 . 0)) (x4 0))) 0) = x5 (x2 (λ x9 . λ x10 : (ι → ι) → ι . λ x11 : (ι → ι)ι → ι . λ x12 : ι → ι . λ x13 . 0) (λ x9 : (ι → ι) → ι . λ x10 . λ x11 : ι → ι . 0) 0) (setsum (Inj0 0) (Inj0 (Inj1 (x7 0 (λ x9 : ι → ι . 0) 0 0)))))(∀ x4 : ι → ι . ∀ x5 . ∀ x6 : ι → ι . ∀ x7 : ι → ((ι → ι) → ι) → ι . x2 (λ x9 . λ x10 : (ι → ι) → ι . λ x11 : (ι → ι)ι → ι . λ x12 : ι → ι . λ x13 . x0 (λ x14 : (ι → ι) → ι . λ x15 x16 . λ x17 : ι → ι . x14 (λ x18 . 0)) (x1 (λ x14 . 0) x13 0) (λ x14 : (ι → ι) → ι . setsum (setsum (setsum 0 0) (x11 (λ x15 . 0) 0)) 0)) (λ x9 : (ι → ι) → ι . λ x10 . λ x11 : ι → ι . x11 (x11 (x11 0))) (x2 (λ x9 . λ x10 : (ι → ι) → ι . λ x11 : (ι → ι)ι → ι . λ x12 : ι → ι . λ x13 . Inj0 (x11 (λ x14 . x11 (λ x15 . 0) 0) (x3 (λ x14 : ι → (ι → ι) → ι . λ x15 . 0) (λ x14 : (ι → ι) → ι . λ x15 . λ x16 : ι → ι . λ x17 . 0)))) (λ x9 : (ι → ι) → ι . λ x10 . λ x11 : ι → ι . x2 (λ x12 . λ x13 : (ι → ι) → ι . λ x14 : (ι → ι)ι → ι . λ x15 : ι → ι . λ x16 . Inj0 (x14 (λ x17 . 0) 0)) (λ x12 : (ι → ι) → ι . λ x13 . λ x14 : ι → ι . x1 (λ x15 . x2 (λ x16 . λ x17 : (ι → ι) → ι . λ x18 : (ι → ι)ι → ι . λ x19 : ι → ι . λ x20 . 0) (λ x16 : (ι → ι) → ι . λ x17 . λ x18 : ι → ι . 0) 0) (x3 (λ x15 : ι → (ι → ι) → ι . λ x16 . 0) (λ x15 : (ι → ι) → ι . λ x16 . λ x17 : ι → ι . λ x18 . 0)) (x0 (λ x15 : (ι → ι) → ι . λ x16 x17 . λ x18 : ι → ι . 0) 0 (λ x15 : (ι → ι) → ι . 0))) (x1 (λ x12 . 0) (x1 (λ x12 . 0) 0 0) (x0 (λ x12 : (ι → ι) → ι . λ x13 x14 . λ x15 : ι → ι . 0) 0 (λ x12 : (ι → ι) → ι . 0)))) (x7 0 (λ x9 : ι → ι . x5))) = setsum (x6 (x2 (λ x9 . λ x10 : (ι → ι) → ι . λ x11 : (ι → ι)ι → ι . λ x12 : ι → ι . λ x13 . 0) (λ x9 : (ι → ι) → ι . λ x10 . λ x11 : ι → ι . x3 (λ x12 : ι → (ι → ι) → ι . λ x13 . setsum 0 0) (λ x12 : (ι → ι) → ι . λ x13 . λ x14 : ι → ι . λ x15 . x1 (λ x16 . 0) 0 0)) (x1 (λ x9 . x1 (λ x10 . 0) 0 0) (x2 (λ x9 . λ x10 : (ι → ι) → ι . λ x11 : (ι → ι)ι → ι . λ x12 : ι → ι . λ x13 . 0) (λ x9 : (ι → ι) → ι . λ x10 . λ x11 : ι → ι . 0) 0) (x4 0)))) 0)(∀ x4 . ∀ x5 : ((ι → ι → ι) → ι)(ι → ι)ι → ι . ∀ x6 : ι → ι . ∀ x7 . x1 (λ x9 . x9) (x1 (λ x9 . x9) (Inj0 (setsum (Inj1 0) (x1 (λ x9 . 0) 0 0))) x4) x7 = x7)(∀ x4 : (ι → ι)ι → (ι → ι) → ι . ∀ x5 : ι → ι → ι . ∀ x6 : ι → ι → (ι → ι) → ι . ∀ x7 . x1 (λ x9 . setsum (x0 (λ x10 : (ι → ι) → ι . λ x11 x12 . λ x13 : ι → ι . x1 (λ x14 . x3 (λ x15 : ι → (ι → ι) → ι . λ x16 . 0) (λ x15 : (ι → ι) → ι . λ x16 . λ x17 : ι → ι . λ x18 . 0)) (setsum 0 0) 0) x9 (λ x10 : (ι → ι) → ι . 0)) 0) (x5 0 (x4 (λ x9 . 0) (x2 (λ x9 . λ x10 : (ι → ι) → ι . λ x11 : (ι → ι)ι → ι . λ x12 : ι → ι . λ x13 . x0 (λ x14 : (ι → ι) → ι . λ x15 x16 . λ x17 : ι → ι . 0) 0 (λ x14 : (ι → ι) → ι . 0)) (λ x9 : (ι → ι) → ι . λ x10 . λ x11 : ι → ι . setsum 0 0) 0) (λ x9 . x2 (λ x10 . λ x11 : (ι → ι) → ι . λ x12 : (ι → ι)ι → ι . λ x13 : ι → ι . λ x14 . x3 (λ x15 : ι → (ι → ι) → ι . λ x16 . 0) (λ x15 : (ι → ι) → ι . λ x16 . λ x17 : ι → ι . λ x18 . 0)) (λ x10 : (ι → ι) → ι . λ x11 . λ x12 : ι → ι . setsum 0 0) (Inj1 0)))) (x0 (λ x9 : (ι → ι) → ι . λ x10 x11 . λ x12 : ι → ι . x2 (λ x13 . λ x14 : (ι → ι) → ι . λ x15 : (ι → ι)ι → ι . λ x16 : ι → ι . λ x17 . Inj1 (x3 (λ x18 : ι → (ι → ι) → ι . λ x19 . 0) (λ x18 : (ι → ι) → ι . λ x19 . λ x20 : ι → ι . λ x21 . 0))) (λ x13 : (ι → ι) → ι . λ x14 . λ x15 : ι → ι . x12 (x3 (λ x16 : ι → (ι → ι) → ι . λ x17 . 0) (λ x16 : (ι → ι) → ι . λ x17 . λ x18 : ι → ι . λ x19 . 0))) x11) x7 (λ x9 : (ι → ι) → ι . x1 (λ x10 . x0 (λ x11 : (ι → ι) → ι . λ x12 x13 . λ x14 : ι → ι . 0) (x2 (λ x11 . λ x12 : (ι → ι) → ι . λ x13 : (ι → ι)ι → ι . λ x14 : ι → ι . λ x15 . 0) (λ x11 : (ι → ι) → ι . λ x12 . λ x13 : ι → ι . 0) 0) (λ x11 : (ι → ι) → ι . Inj1 0)) (x5 (x9 (λ x10 . 0)) (x6 0 0 (λ x10 . 0))) 0)) = setsum (Inj1 (x2 (λ x9 . λ x10 : (ι → ι) → ι . λ x11 : (ι → ι)ι → ι . λ x12 : ι → ι . λ x13 . x3 (λ x14 : ι → (ι → ι) → ι . λ x15 . x12 0) (λ x14 : (ι → ι) → ι . λ x15 . λ x16 : ι → ι . λ x17 . x17)) (λ x9 : (ι → ι) → ι . λ x10 . λ x11 : ι → ι . x1 (λ x12 . 0) (x3 (λ x12 : ι → (ι → ι) → ι . λ x13 . 0) (λ x12 : (ι → ι) → ι . λ x13 . λ x14 : ι → ι . λ x15 . 0)) (setsum 0 0)) 0)) (Inj1 (x5 x7 (Inj0 0))))(∀ x4 : (ι → ι)ι → (ι → ι)ι → ι . ∀ x5 : ι → ((ι → ι)ι → ι) → ι . ∀ x6 . ∀ x7 : ((ι → ι → ι) → ι)(ι → ι)(ι → ι) → ι . x0 (λ x9 : (ι → ι) → ι . λ x10 x11 . λ x12 : ι → ι . x10) (x1 (λ x9 . x0 (λ x10 : (ι → ι) → ι . λ x11 x12 . λ x13 : ι → ι . x11) (x7 (λ x10 : ι → ι → ι . x7 (λ x11 : ι → ι → ι . 0) (λ x11 . 0) (λ x11 . 0)) (λ x10 . x2 (λ x11 . λ x12 : (ι → ι) → ι . λ x13 : (ι → ι)ι → ι . λ x14 : ι → ι . λ x15 . 0) (λ x11 : (ι → ι) → ι . λ x12 . λ x13 : ι → ι . 0) 0) (λ x10 . x1 (λ x11 . 0) 0 0)) (λ x10 : (ι → ι) → ι . setsum x9 (setsum 0 0))) (setsum (x0 (λ x9 : (ι → ι) → ι . λ x10 x11 . λ x12 : ι → ι . x10) (Inj0 0) (λ x9 : (ι → ι) → ι . x3 (λ x10 : ι → (ι → ι) → ι . λ x11 . 0) (λ x10 : (ι → ι) → ι . λ x11 . λ x12 : ι → ι . λ x13 . 0))) (x4 (λ x9 . Inj0 0) (setsum 0 0) (λ x9 . x9) (x7 (λ x9 : ι → ι → ι . 0) (λ x9 . 0) (λ x9 . 0)))) 0) (λ x9 : (ι → ι) → ι . Inj1 x6) = x1 (λ x9 . x1 (λ x10 . x1 (λ x11 . 0) (x2 (λ x11 . λ x12 : (ι → ι) → ι . λ x13 : (ι → ι)ι → ι . λ x14 : ι → ι . λ x15 . x2 (λ x16 . λ x17 : (ι → ι) → ι . λ x18 : (ι → ι)ι → ι . λ x19 : ι → ι . λ x20 . 0) (λ x16 : (ι → ι) → ι . λ x17 . λ x18 : ι → ι . 0) 0) (λ x11 : (ι → ι) → ι . λ x12 . λ x13 : ι → ι . Inj1 0) 0) 0) (x5 0 (λ x10 : ι → ι . λ x11 . 0)) 0) (x1 (λ x9 . 0) (x7 (λ x9 : ι → ι → ι . 0) (λ x9 . 0) (λ x9 . setsum 0 0)) (Inj1 (Inj0 (x4 (λ x9 . 0) 0 (λ x9 . 0) 0)))) x6)(∀ x4 x5 : ι → ι . ∀ x6 x7 . x0 (λ x9 : (ι → ι) → ι . λ x10 x11 . λ x12 : ι → ι . 0) (x1 (λ x9 . 0) x7 (x4 (x0 (λ x9 : (ι → ι) → ι . λ x10 x11 . λ x12 : ι → ι . x10) 0 (λ x9 : (ι → ι) → ι . x2 (λ x10 . λ x11 : (ι → ι) → ι . λ x12 : (ι → ι)ι → ι . λ x13 : ι → ι . λ x14 . 0) (λ x10 : (ι → ι) → ι . λ x11 . λ x12 : ι → ι . 0) 0)))) (λ x9 : (ι → ι) → ι . 0) = x1 (λ x9 . x2 (λ x10 . λ x11 : (ι → ι) → ι . λ x12 : (ι → ι)ι → ι . λ x13 : ι → ι . λ x14 . Inj1 (x12 (λ x15 . x2 (λ x16 . λ x17 : (ι → ι) → ι . λ x18 : (ι → ι)ι → ι . λ x19 : ι → ι . λ x20 . 0) (λ x16 : (ι → ι) → ι . λ x17 . λ x18 : ι → ι . 0) 0) (setsum 0 0))) (λ x10 : (ι → ι) → ι . λ x11 . λ x12 : ι → ι . 0) (x3 (λ x10 : ι → (ι → ι) → ι . λ x11 . x9) (λ x10 : (ι → ι) → ι . λ x11 . λ x12 : ι → ι . λ x13 . 0))) (Inj0 (x0 (λ x9 : (ι → ι) → ι . λ x10 x11 . λ x12 : ι → ι . x11) x7 (λ x9 : (ι → ι) → ι . x9 (λ x10 . 0)))) (setsum (setsum (Inj0 0) (setsum x6 0)) 0))False
as obj
-
as prop
6b7c6..
theory
HF
stx
4660d..
address
TMb8V..