Search for blocks/addresses/...

Proofgold Proposition

∀ x0 : ο . ((∀ x1 : ι → ι → ο . ∀ x2 x3 . (∀ x4 . wceq (cv x4) (cv x3))(∀ x4 . x1 x4 x3)∀ x4 . x1 x2 x4)(∀ x1 : ι → ο . (∀ x2 . wceq (cv x2) (cv x2))(∀ x2 . x1 x2)∀ x2 . x1 x2)(∀ x1 x2 . (∀ x3 . wceq (cv x3) (cv x2))∀ x3 . wceq (cv x3) (cv x1))(∀ x1 : ι → ο . ∀ x2 x3 . wn (∀ x4 . wceq (cv x4) (cv x2))wceq (cv x3) (cv x2)x1 x3∀ x4 . wceq (cv x4) (cv x2)x1 x4)(∀ x1 x2 . wn (∀ x3 . wceq (cv x3) (cv x1))wn (∀ x3 . wceq (cv x3) (cv x2))wceq (cv x1) (cv x2)∀ x3 . wceq (cv x1) (cv x2))(∀ x1 . wn (∀ x2 . wceq (cv x2) (cv x2))wn (∀ x2 . wceq (cv x2) (cv x2))wceq (cv x1) (cv x1)∀ x2 . wceq (cv x2) (cv x2))(∀ x1 . wn (∀ x2 . wceq (cv x2) (cv x1))wn (∀ x2 . wceq (cv x2) (cv x1))wceq (cv x1) (cv x1)∀ x2 . wceq (cv x1) (cv x1))(∀ x1 x2 . wn (∀ x3 . wceq (cv x3) (cv x3))wn (∀ x3 . wceq (cv x3) (cv x1))wceq (cv x2) (cv x1)∀ x3 . wceq (cv x3) (cv x1))(∀ x1 x2 . wn (∀ x3 . wceq (cv x3) (cv x1))wn (∀ x3 . wceq (cv x3) (cv x3))wceq (cv x1) (cv x2)∀ x3 . wceq (cv x1) (cv x3))(∀ x1 x2 . wn (∀ x3 . wceq (cv x3) (cv x1))wn (∀ x3 . wceq (cv x3) (cv x2))wcel (cv x1) (cv x2)∀ x3 . wcel (cv x1) (cv x2))(∀ x1 : ι → ο . ∀ x2 x3 . (∀ x4 . wceq (cv x4) (cv x2))x1 x3∀ x4 . x1 x4)(∀ x1 : ι → ο . ∀ x2 : ι → ι → ο . wceq (crio x1 x2) (cif (wreu x1 x2) (cio (λ x3 . wa (wcel (cv x3) (x2 x3)) (x1 x3))) (cfv (cab (λ x3 . wcel (cv x3) (x2 x3))) cund)))wceq clsa (cmpt (λ x1 . cvv) (λ x1 . crn (cmpt (λ x2 . cdif (cfv (cv x1) cbs) (csn (cfv (cv x1) c0g))) (λ x2 . cfv (csn (cv x2)) (cfv (cv x1) clspn)))))wceq clsh (cmpt (λ x1 . cvv) (λ x1 . crab (λ x2 . wa (wne (cv x2) (cfv (cv x1) cbs)) (wrex (λ x3 . wceq (cfv (cun (cv x2) (csn (cv x3))) (cfv (cv x1) clspn)) (cfv (cv x1) cbs)) (λ x3 . cfv (cv x1) cbs))) (λ x2 . cfv (cv x1) clss)))wceq clcv (cmpt (λ x1 . cvv) (λ x1 . copab (λ x2 x3 . wa (wa (wcel (cv x2) (cfv (cv x1) clss)) (wcel (cv x3) (cfv (cv x1) clss))) (wa (wpss (cv x2) (cv x3)) (wn (wrex (λ x4 . wa (wpss (cv x2) (cv x4)) (wpss (cv x4) (cv x3))) (λ x4 . cfv (cv x1) clss)))))))wceq clfn (cmpt (λ x1 . cvv) (λ x1 . crab (λ x2 . wral (λ x3 . wral (λ x4 . wral (λ x5 . wceq (cfv (co (co (cv x3) (cv x4) (cfv (cv x1) cvsca)) (cv x5) (cfv (cv x1) cplusg)) (cv x2)) (co (co (cv x3) (cfv (cv x4) (cv x2)) (cfv (cfv (cv x1) csca) cmulr)) (cfv (cv x5) (cv x2)) (cfv (cfv (cv x1) csca) cplusg))) (λ x5 . cfv (cv x1) cbs)) (λ x4 . cfv (cv x1) cbs)) (λ x3 . cfv (cfv (cv x1) csca) cbs)) (λ x2 . co (cfv (cfv (cv x1) csca) cbs) (cfv (cv x1) cbs) cmap)))wceq clk (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cfv (cv x1) clfn) (λ x2 . cima (ccnv (cv x2)) (csn (cfv (cfv (cv x1) csca) c0g)))))wceq cld (cmpt (λ x1 . cvv) (λ x1 . cun (ctp (cop (cfv cnx cbs) (cfv (cv x1) clfn)) (cop (cfv cnx cplusg) (cres (cof (cfv (cfv (cv x1) csca) cplusg)) (cxp (cfv (cv x1) clfn) (cfv (cv x1) clfn)))) (cop (cfv cnx csca) (cfv (cfv (cv x1) csca) coppr))) (csn (cop (cfv cnx cvsca) (cmpt2 (λ x2 x3 . cfv (cfv (cv x1) csca) cbs) (λ x2 x3 . cfv (cv x1) clfn) (λ x2 x3 . co (cv x3) (cxp (cfv (cv x1) cbs) (csn (cv x2))) (cof (cfv (cfv (cv x1) csca) cmulr))))))))x0)x0
type
prop
theory
SetMM
name
ax_c11__ax_c11_b__ax_c11n__ax_c15__ax_c9__ax_c9_b__ax_c9_b1__ax_c9_b2__ax_c9_b3__ax_c14__ax_c16__ax_riotaBAD__df_lsatoms__df_lshyp__df_lcv__df_lfl__df_lkr__df_ldual
proof
PUV1k..
Megalodon
-
proofgold address
TMXt2..
creator
36224 PrCmT../6075f..
owner
36224 PrCmT../6075f..
term root
9b84d..