Search for blocks/addresses/...

Proofgold Proposition

∀ x0 : ο . (wceq clo (crab (λ x1 . wral (λ x2 . wral (λ x3 . wral (λ x4 . wceq (cfv (co (co (cv x2) (cv x3) csm) (cv x4) cva) (cv x1)) (co (co (cv x2) (cfv (cv x3) (cv x1)) csm) (cfv (cv x4) (cv x1)) cva)) (λ x4 . chil)) (λ x3 . chil)) (λ x2 . cc)) (λ x1 . co chil chil cmap))wceq cbo (crab (λ x1 . wbr (cfv (cv x1) cnop) cpnf clt) (λ x1 . clo))wceq cuo (cab (λ x1 . wa (wfo chil chil (cv x1)) (wral (λ x2 . wral (λ x3 . wceq (co (cfv (cv x2) (cv x1)) (cfv (cv x3) (cv x1)) csp) (co (cv x2) (cv x3) csp)) (λ x3 . chil)) (λ x2 . chil))))wceq cho (crab (λ x1 . wral (λ x2 . wral (λ x3 . wceq (co (cv x2) (cfv (cv x3) (cv x1)) csp) (co (cfv (cv x2) (cv x1)) (cv x3) csp)) (λ x3 . chil)) (λ x2 . chil)) (λ x1 . co chil chil cmap))wceq cnmf (cmpt (λ x1 . co cc chil cmap) (λ x1 . csup (cab (λ x2 . wrex (λ x3 . wa (wbr (cfv (cv x3) cno) c1 cle) (wceq (cv x2) (cfv (cfv (cv x3) (cv x1)) cabs))) (λ x3 . chil))) cxr clt))wceq cnl (cmpt (λ x1 . co cc chil cmap) (λ x1 . cima (ccnv (cv x1)) (csn cc0)))wceq ccnfn (crab (λ x1 . wral (λ x2 . wral (λ x3 . wrex (λ x4 . wral (λ x5 . wbr (cfv (co (cv x5) (cv x2) cmv) cno) (cv x4) cltwbr (cfv (co (cfv (cv x5) (cv x1)) (cfv (cv x2) (cv x1)) cmin) cabs) (cv x3) clt) (λ x5 . chil)) (λ x4 . crp)) (λ x3 . crp)) (λ x2 . chil)) (λ x1 . co cc chil cmap))wceq clf (crab (λ x1 . wral (λ x2 . wral (λ x3 . wral (λ x4 . wceq (cfv (co (co (cv x2) (cv x3) csm) (cv x4) cva) (cv x1)) (co (co (cv x2) (cfv (cv x3) (cv x1)) cmul) (cfv (cv x4) (cv x1)) caddc)) (λ x4 . chil)) (λ x3 . chil)) (λ x2 . cc)) (λ x1 . co cc chil cmap))wceq cado (copab (λ x1 x2 . w3a (wf chil chil (cv x1)) (wf chil chil (cv x2)) (wral (λ x3 . wral (λ x4 . wceq (co (cfv (cv x3) (cv x1)) (cv x4) csp) (co (cv x3) (cfv (cv x4) (cv x2)) csp)) (λ x4 . chil)) (λ x3 . chil))))wceq cbr (cmpt (λ x1 . chil) (λ x1 . cmpt (λ x2 . chil) (λ x2 . co (cv x2) (cv x1) csp)))wceq ck (cmpt2 (λ x1 x2 . chil) (λ x1 x2 . chil) (λ x1 x2 . cmpt (λ x3 . chil) (λ x3 . co (co (cv x3) (cv x2) csp) (cv x1) csm)))wceq cleo (copab (λ x1 x2 . wa (wcel (co (cv x2) (cv x1) chod) cho) (wral (λ x3 . wbr cc0 (co (cfv (cv x3) (co (cv x2) (cv x1) chod)) (cv x3) csp) cle) (λ x3 . chil))))wceq cei (cmpt (λ x1 . co chil chil cmap) (λ x1 . crab (λ x2 . wrex (λ x3 . wceq (cfv (cv x2) (cv x1)) (co (cv x3) (cv x2) csm)) (λ x3 . cc)) (λ x2 . cdif chil c0h)))wceq cel (cmpt (λ x1 . co chil chil cmap) (λ x1 . cmpt (λ x2 . cfv (cv x1) cei) (λ x2 . co (co (cfv (cv x2) (cv x1)) (cv x2) csp) (co (cfv (cv x2) cno) c2 cexp) cdiv)))wceq cspc (cmpt (λ x1 . co chil chil cmap) (λ x1 . crab (λ x2 . wn (wf1 chil chil (co (cv x1) (co (cv x2) (cres cid chil) chot) chod))) (λ x2 . cc)))wceq cst (crab (λ x1 . wa (wceq (cfv chil (cv x1)) c1) (wral (λ x2 . wral (λ x3 . wss (cv x2) (cfv (cv x3) cort)wceq (cfv (co (cv x2) (cv x3) chj) (cv x1)) (co (cfv (cv x2) (cv x1)) (cfv (cv x3) (cv x1)) caddc)) (λ x3 . cch)) (λ x2 . cch))) (λ x1 . co (co cc0 c1 cicc) cch cmap))wceq chst (crab (λ x1 . wa (wceq (cfv (cfv chil (cv x1)) cno) c1) (wral (λ x2 . wral (λ x3 . wss (cv x2) (cfv (cv x3) cort)wa (wceq (co (cfv (cv x2) (cv x1)) (cfv (cv x3) (cv x1)) csp) cc0) (wceq (cfv (co (cv x2) (cv x3) chj) (cv x1)) (co (cfv (cv x2) (cv x1)) (cfv (cv x3) (cv x1)) cva))) (λ x3 . cch)) (λ x2 . cch))) (λ x1 . co chil cch cmap))wceq ccv (copab (λ x1 x2 . wa (wa (wcel (cv x1) cch) (wcel (cv x2) cch)) (wa (wpss (cv x1) (cv x2)) (wn (wrex (λ x3 . wa (wpss (cv x1) (cv x3)) (wpss (cv x3) (cv x2))) (λ x3 . cch))))))x0)x0
type
prop
theory
SetMM
name
df_lnop__df_bdop__df_unop__df_hmop__df_nmfn__df_nlfn__df_cnfn__df_lnfn__df_adjh__df_bra__df_kb__df_leop__df_eigvec__df_eigval__df_spec__df_st__df_hst__df_cv
proof
PUV1k..
Megalodon
-
proofgold address
TMVnK..
creator
36224 PrCmT../ece78..
owner
36224 PrCmT../ece78..
term root
3eb9e..