Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrKRy../e983c..
PUKBs../21526..
vout
PrKRy../9eb32.. 25.87 bars
TMbDA../296dc.. ownership of 29cb8.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0
TMbHz../5d9ea.. ownership of 68e3a.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0
TMSzu../461ef.. ownership of c13a6.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0
TMLj9../4df18.. ownership of 2d82a.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0
TMaVm../398e4.. ownership of 1b96e.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0
TMRUk../49f06.. ownership of 10ad9.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0
TMRVd../a3391.. ownership of 6c860.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0
TMTLc../15fe3.. ownership of 2b306.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0
TMSBk../ce7a1.. ownership of 30bb5.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0
TMHJE../1e8ef.. ownership of 43770.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0
TMctL../9d460.. ownership of 6993e.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0
TMVrj../df8bd.. ownership of 42607.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0
TMaLB../d64b5.. ownership of 05d15.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0
TMbaN../04b4f.. ownership of 2a371.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0
TMNYx../de841.. ownership of 91710.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0
TMUeV../20a7c.. ownership of 88975.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0
TMZbL../2fe7f.. ownership of 29cbb.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0
TMXCr../ac341.. ownership of e03c3.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0
TMRW1../8219c.. ownership of 8e3ed.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0
TMSH3../19da9.. ownership of 89e75.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0
TMSzm../7a868.. ownership of 9033d.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0
TMdZH../54431.. ownership of 4c987.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0
TMLnX../3f724.. ownership of 7a4d9.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0
TMN8e../db1e7.. ownership of 7a61a.. as prop with payaddr PrGVS.. rights free controlledby PrGVS.. upto 0
PUZsJ../49dc4.. doc published by PrGVS..
Known 8106d..notI : ∀ x0 : ο . (x0False)not x0
Known FalseEFalseE : False∀ x0 : ο . x0
Theorem 7a4d9.. : not (∀ x0 : (ι → (ι → ι) → ι)((ι → (ι → ι) → ι) → ι) → ο . ∀ x1 : (ι → (ι → ι)ι → ι → ι)((ι → (ι → ι)ι → ι)ι → ι → ι → ι)(((ι → ι) → ι) → ι) → ο . ∀ x2 : ((ι → ι)ι → ι)(ι → ((ι → ι)ι → ι) → ι) → ο . ∀ x3 : ((((ι → ι) → ι)ι → ι) → ι)ι → ο . (∀ x4 : ι → ι . ∀ x5 x6 . ∀ x7 : ι → ι . x0 (λ x8 . λ x9 : ι → ι . 0) (λ x8 : ι → (ι → ι) → ι . setsum 0 x5)x3 (λ x8 : ((ι → ι) → ι)ι → ι . x8 (λ x9 : ι → ι . Inj1 0) x6) (setsum (Inj0 0) (setsum (Inj1 (x4 0)) (Inj1 (Inj0 0)))))(∀ x4 : (((ι → ι) → ι)(ι → ι)ι → ι) → ι . ∀ x5 : ι → (ι → ι)ι → ι . ∀ x6 : ι → ((ι → ι) → ι)ι → ι . ∀ x7 . x3 (λ x8 : ((ι → ι) → ι)ι → ι . x8 (λ x9 : ι → ι . Inj0 x7) 0) (Inj1 x7)False)(∀ x4 . ∀ x5 : (ι → ι)((ι → ι) → ι) → ι . ∀ x6 : (ι → ι → ι) → ι . ∀ x7 . x2 (λ x8 : ι → ι . λ x9 . setsum (x8 (setsum 0 (setsum 0 0))) x7) (λ x8 . λ x9 : (ι → ι)ι → ι . x6 (λ x10 x11 . setsum (setsum x11 (setsum 0 0)) x11))x2 (λ x8 : ι → ι . λ x9 . 0) (λ x8 . λ x9 : (ι → ι)ι → ι . Inj1 (Inj1 0)))(∀ x4 : (ι → ι) → ι . ∀ x5 x6 x7 . x2 (λ x8 : ι → ι . Inj1) (λ x8 . λ x9 : (ι → ι)ι → ι . 0)False)(∀ x4 : ι → ι → ι → ι → ι . ∀ x5 x6 . ∀ x7 : ι → ι . In (Inj1 0) (setsum (Inj0 (x4 (setsum 0 0) (Inj1 0) (Inj1 0) (setsum 0 0))) 0)x1 (λ x8 . λ x9 : ι → ι . λ x10 x11 . setsum (Inj1 (setsum 0 (Inj1 0))) (x9 (Inj1 0))) (λ x8 : ι → (ι → ι)ι → ι . λ x9 x10 x11 . x11) (λ x8 : (ι → ι) → ι . 0)x1 (λ x8 . λ x9 : ι → ι . λ x10 x11 . 0) (λ x8 : ι → (ι → ι)ι → ι . λ x9 x10 x11 . setsum (setsum 0 (Inj0 0)) (setsum (Inj0 0) 0)) (λ x8 : (ι → ι) → ι . setsum (Inj0 (x7 (setsum 0 0))) 0))(∀ x4 : ι → ι . ∀ x5 x6 x7 . x1 (λ x8 . λ x9 : ι → ι . λ x10 x11 . setsum (Inj0 (setsum (setsum 0 0) (Inj0 0))) (setsum (setsum (setsum 0 0) 0) (Inj1 0))) (λ x8 : ι → (ι → ι)ι → ι . λ x9 x10 x11 . 0) (λ x8 : (ι → ι) → ι . setsum 0 (Inj0 x6))In (Inj1 (Inj1 0)) x7)(∀ x4 x5 : ι → ι → ι . ∀ x6 x7 . x0 (λ x8 . λ x9 : ι → ι . 0) (λ x8 : ι → (ι → ι) → ι . x7)x0 (λ x8 . λ x9 : ι → ι . x6) (λ x8 : ι → (ι → ι) → ι . 0))(∀ x4 : ι → ι → ι . ∀ x5 . ∀ x6 x7 : ι → ι . x0 (λ x8 . λ x9 : ι → ι . Inj0 (setsum 0 (Inj1 0))) (λ x8 : ι → (ι → ι) → ι . 0)In (setsum 0 0) (Inj0 0))False) (proof)
Known TrueITrueI : True
Theorem 9033d.. : not (∀ x0 : ((ι → ι → (ι → ι) → ι) → ι)ι → ι → ο . ∀ x1 : (ι → ι)ι → ο . ∀ x2 : ((((ι → ι) → ι)((ι → ι)ι → ι) → ι) → ι)ι → (ι → ι → ι) → ο . ∀ x3 : (ι → (ι → ι) → ι)(((ι → ι) → ι) → ι) → ο . (∀ x4 : ι → ι → ι → ι → ι . ∀ x5 x6 . ∀ x7 : ι → ι . x3 (λ x8 . λ x9 : ι → ι . x9 (Inj1 (Inj0 x6))) (λ x8 : (ι → ι) → ι . setsum (Inj1 (setsum x6 0)) (Inj0 0)))(∀ x4 : ι → ι . ∀ x5 : (((ι → ι)ι → ι) → ι) → ι . ∀ x6 : (((ι → ι) → ι)ι → ι) → ι . ∀ x7 . In (setsum (Inj0 (setsum (Inj0 0) 0)) (Inj1 0)) (Inj0 x7)x3 (λ x8 . λ x9 : ι → ι . x8) (λ x8 : (ι → ι) → ι . Inj0 (setsum (setsum (setsum 0 0) 0) (setsum (setsum 0 0) 0)))x3 (λ x8 . λ x9 : ι → ι . 0) (λ x8 : (ι → ι) → ι . 0))(∀ x4 x5 . ∀ x6 : ι → ι → ι . ∀ x7 : (ι → ι)ι → ι . x1 (λ x8 . x5) (setsum x5 (x6 (Inj1 0) (Inj1 (Inj0 0))))x2 (λ x8 : ((ι → ι) → ι)((ι → ι)ι → ι) → ι . x6 (x8 (λ x9 : ι → ι . 0) (λ x9 : ι → ι . λ x10 . 0)) 0) (x6 0 x4) (λ x8 x9 . Inj1 (x7 (λ x10 . Inj1 x9) 0)))(∀ x4 : ι → ι → (ι → ι)ι → ι . ∀ x5 x6 x7 . x2 (λ x8 : ((ι → ι) → ι)((ι → ι)ι → ι) → ι . Inj1 0) 0 (λ x8 x9 . setsum (Inj0 0) x7)In (Inj0 (Inj0 (setsum x6 (Inj0 0)))) (Inj0 (setsum (Inj0 (setsum 0 0)) (setsum (x4 0 0 (λ x8 . 0) 0) x7))))(∀ x4 x5 . ∀ x6 : ((ι → ι)(ι → ι)ι → ι)(ι → ι → ι) → ι . ∀ x7 . In (Inj1 x5) (Inj1 (setsum (Inj1 (x6 (λ x8 x9 : ι → ι . λ x10 . 0) (λ x8 x9 . 0))) (Inj1 (setsum 0 0))))x1 (λ x8 . x6 (λ x9 x10 : ι → ι . λ x11 . Inj0 0) (λ x9 x10 . setsum (Inj0 0) 0)) (setsum 0 (setsum (setsum 0 (setsum 0 0)) (setsum 0 0)))x1 (λ x8 . 0) (setsum 0 (Inj0 0)))(∀ x4 . ∀ x5 : (ι → ι)ι → ι . ∀ x6 x7 . x1 (λ x8 . 0) (Inj1 (setsum (Inj1 (setsum 0 0)) (Inj1 0)))False)(∀ x4 x5 . ∀ x6 : ι → ι . ∀ x7 . In x5 (setsum (setsum 0 0) (Inj1 (setsum (Inj0 0) x4)))x1 (λ x8 . x7) (Inj1 0)x0 (λ x8 : ι → ι → (ι → ι) → ι . setsum (setsum x7 0) (x6 0)) 0 (setsum (Inj0 (setsum 0 (Inj0 0))) 0))(∀ x4 : ι → ι → ι . ∀ x5 . ∀ x6 : (((ι → ι) → ι)(ι → ι) → ι)ι → (ι → ι)ι → ι . ∀ x7 . x0 (λ x8 : ι → ι → (ι → ι) → ι . 0) (setsum 0 (Inj0 (setsum x5 (Inj1 0)))) (setsum (Inj0 (setsum (setsum 0 0) (setsum 0 0))) (Inj0 (Inj1 0)))In (Inj1 (Inj1 (Inj1 0))) (setsum 0 (setsum 0 (Inj1 0))))False) (proof)
Theorem 8e3ed.. : not (∀ x0 : ((ι → ι → ι) → ι)ι → ο . ∀ x1 : (ι → ι)(((ι → ι → ι)ι → ι) → ι) → ο . ∀ x2 : (ι → (ι → ι → ι → ι) → ι)(ι → ι)(ι → ι)ι → ι → ο . ∀ x3 : (ι → (ι → ι)((ι → ι) → ι) → ι)(((ι → ι) → ι) → ι)((ι → ι)ι → ι → ι) → ο . (∀ x4 . ∀ x5 : (ι → ι → ι) → ι . ∀ x6 x7 . x3 (λ x8 . λ x9 : ι → ι . λ x10 : (ι → ι) → ι . 0) (λ x8 : (ι → ι) → ι . 0) (λ x8 : ι → ι . λ x9 x10 . Inj1 (setsum (Inj0 x9) 0)))(∀ x4 x5 x6 x7 . x3 (λ x8 . λ x9 : ι → ι . λ x10 : (ι → ι) → ι . setsum (Inj1 0) (setsum (Inj0 (setsum 0 0)) x7)) (λ x8 : (ι → ι) → ι . x6) (λ x8 : ι → ι . λ x9 x10 . x10)x3 (λ x8 . λ x9 : ι → ι . λ x10 : (ι → ι) → ι . Inj1 (x10 (λ x11 . setsum (setsum 0 0) 0))) (λ x8 : (ι → ι) → ι . 0) (λ x8 : ι → ι . λ x9 x10 . setsum x10 x7))(∀ x4 : (ι → (ι → ι) → ι)((ι → ι)ι → ι)ι → ι → ι . ∀ x5 x6 x7 . In (x4 (λ x8 . λ x9 : ι → ι . x6) (λ x8 : ι → ι . λ x9 . Inj1 (Inj0 (setsum 0 0))) (setsum 0 (setsum (setsum 0 0) 0)) x5) (setsum 0 (setsum (setsum (setsum 0 0) 0) x7))x0 (λ x8 : ι → ι → ι . x7) (Inj1 (setsum x5 (Inj1 x6)))x2 (λ x8 . λ x9 : ι → ι → ι → ι . Inj1 0) (λ x8 . x5) (λ x8 . 0) x6 0)(∀ x4 : (ι → ι → ι) → ι . ∀ x5 : ι → ((ι → ι) → ι)(ι → ι)ι → ι . ∀ x6 : ι → ι . ∀ x7 . In (x6 (Inj0 (setsum (Inj1 0) (Inj1 0)))) (setsum (x5 (x5 0 (λ x8 : ι → ι . setsum 0 0) (λ x8 . Inj1 0) (setsum 0 0)) (λ x8 : ι → ι . setsum (x6 0) 0) (λ x8 . x5 0 (λ x9 : ι → ι . 0) (λ x9 . x7) (setsum 0 0)) 0) (x4 (λ x8 x9 . Inj1 (setsum 0 0))))x2 (λ x8 . λ x9 : ι → ι → ι → ι . x6 (Inj1 x7)) (λ x8 . x8) (λ x8 . setsum 0 0) (x5 0 (λ x8 : ι → ι . x5 0 (λ x9 : ι → ι . setsum (setsum 0 0) (setsum 0 0)) (λ x9 . Inj1 (x6 0)) 0) (λ x8 . setsum (x5 (setsum 0 0) (λ x9 : ι → ι . Inj0 0) (λ x9 . Inj0 0) (Inj1 0)) (Inj1 0)) (x4 (λ x8 x9 . 0))) (x6 0)x0 (λ x8 : ι → ι → ι . x5 (Inj1 0) (λ x9 : ι → ι . Inj0 0) Inj1 (Inj1 0)) (Inj1 (x6 (Inj0 x7))))(∀ x4 : ((ι → ι → ι)ι → ι)ι → ι . ∀ x5 x6 x7 . In x5 x5x1 (λ x8 . Inj1 x5) (λ x8 : (ι → ι → ι)ι → ι . 0))(∀ x4 : ι → ι . ∀ x5 x6 . ∀ x7 : (ι → ι) → ι . In (Inj0 (setsum (Inj0 (Inj1 0)) 0)) (Inj0 (setsum (x4 (Inj1 0)) x6))x1 (λ x8 . 0) (λ x8 : (ι → ι → ι)ι → ι . x5)x3 (λ x8 . λ x9 : ι → ι . λ x10 : (ι → ι) → ι . setsum (Inj1 (setsum 0 0)) (Inj1 x8)) (λ x8 : (ι → ι) → ι . Inj1 (setsum (Inj1 0) 0)) (λ x8 : ι → ι . λ x9 x10 . x10))(∀ x4 : ((ι → ι → ι)(ι → ι) → ι)((ι → ι) → ι)ι → ι → ι . ∀ x5 . ∀ x6 : ι → ((ι → ι) → ι) → ι . ∀ x7 : ι → ι . In (Inj0 0) (setsum (x6 (setsum (setsum 0 0) (Inj1 0)) (λ x8 : ι → ι . x5)) (x6 0 (λ x8 : ι → ι . x5)))x0 (λ x8 : ι → ι → ι . 0) (setsum 0 (Inj1 (setsum (Inj0 0) (x4 (λ x8 : ι → ι → ι . λ x9 : ι → ι . 0) (λ x8 : ι → ι . 0) 0 0)))))(∀ x4 : ι → (ι → ι) → ι . ∀ x5 : ι → (ι → ι → ι) → ι . ∀ x6 : ι → ι → ι . ∀ x7 . x0 (λ x8 : ι → ι → ι . Inj1 (setsum (setsum (setsum 0 0) 0) (setsum (Inj0 0) 0))) 0x3 (λ x8 . λ x9 : ι → ι . λ x10 : (ι → ι) → ι . setsum 0 (x10 (λ x11 . setsum 0 0))) (λ x8 : (ι → ι) → ι . Inj0 (Inj1 (Inj1 (setsum 0 0)))) (λ x8 : ι → ι . λ x9 x10 . setsum (x8 0) x7))False) (proof)
Theorem 29cbb.. : not (∀ x0 : (ι → ι)ι → ο . ∀ x1 : (((ι → ι → ι → ι) → ι)ι → ι)(ι → ι → ι)(ι → ι) → ο . ∀ x2 : (((((ι → ι) → ι)ι → ι) → ι) → ι)((ι → ι → ι)((ι → ι) → ι) → ι)ι → ((ι → ι) → ι) → ο . ∀ x3 : (ι → ι)ι → (((ι → ι)ι → ι)ι → ι) → ο . (∀ x4 : ι → ι → ι . ∀ x5 : ((ι → ι → ι)ι → ι) → ι . ∀ x6 : (ι → ι) → ι . ∀ x7 . In (setsum 0 (setsum (x6 (λ x8 . Inj0 0)) 0)) (setsum (x6 (λ x8 . Inj0 (setsum 0 0))) (Inj0 (setsum (setsum 0 0) (x6 (λ x8 . 0)))))x0 (λ x8 . setsum (Inj1 (Inj1 (setsum 0 0))) (x6 (λ x9 . Inj0 x8))) (x4 (Inj1 (Inj1 (Inj0 0))) (setsum 0 (Inj1 (x6 (λ x8 . 0)))))x3 (λ x8 . x7) (x5 (λ x8 : ι → ι → ι . λ x9 . setsum 0 (Inj1 (x8 0 0)))) (λ x8 : (ι → ι)ι → ι . λ x9 . setsum (Inj1 x7) (x6 (λ x10 . x10))))(∀ x4 : (((ι → ι) → ι) → ι) → ι . ∀ x5 : ι → (ι → ι) → ι . ∀ x6 : (((ι → ι) → ι) → ι)ι → ι . ∀ x7 . In (x4 (λ x8 : (ι → ι) → ι . 0)) (Inj1 (setsum (Inj1 0) (setsum (Inj0 0) (setsum 0 0))))x3 (λ x8 . Inj0 0) (Inj0 (Inj0 (x5 0 (λ x8 . 0)))) (λ x8 : (ι → ι)ι → ι . λ x9 . 0)x0 (λ x8 . Inj0 (Inj0 (Inj1 x8))) (x6 (λ x8 : (ι → ι) → ι . x5 (setsum 0 0) (setsum (Inj0 0))) (setsum (x4 (λ x8 : (ι → ι) → ι . Inj1 0)) 0)))(∀ x4 : (ι → ι → ι) → ι . ∀ x5 : ((ι → ι)ι → ι → ι)((ι → ι) → ι) → ι . ∀ x6 : ((ι → ι) → ι)ι → ι → ι → ι . ∀ x7 . x3 (λ x8 . Inj1 0) 0 (λ x8 : (ι → ι)ι → ι . λ x9 . 0)x2 (λ x8 : (((ι → ι) → ι)ι → ι) → ι . 0) (λ x8 : ι → ι → ι . λ x9 : (ι → ι) → ι . setsum (x9 (λ x10 . x8 (setsum 0 0) 0)) (setsum 0 0)) (setsum (Inj1 (Inj0 (setsum 0 0))) (Inj0 0)) (λ x8 : ι → ι . x7))(∀ x4 x5 . ∀ x6 : ι → ι → ι → ι . ∀ x7 . x2 (λ x8 : (((ι → ι) → ι)ι → ι) → ι . x5) (λ x8 : ι → ι → ι . λ x9 : (ι → ι) → ι . 0) (Inj1 (Inj0 0)) (λ x8 : ι → ι . setsum (setsum (Inj1 (x6 0 0 0)) (setsum x7 (x8 0))) x5)x3 (λ x8 . Inj0 (Inj1 (setsum (Inj0 0) (setsum 0 0)))) (x6 0 0 0) (λ x8 : (ι → ι)ι → ι . λ x9 . Inj0 (Inj1 0)))(∀ x4 x5 x6 x7 . x3 (λ x8 . setsum (setsum (setsum (Inj1 0) 0) (Inj1 (setsum 0 0))) 0) (setsum (setsum (setsum 0 (setsum 0 0)) (setsum x5 x4)) (Inj1 0)) (λ x8 : (ι → ι)ι → ι . λ x9 . x7)x1 (λ x8 : (ι → ι → ι → ι) → ι . λ x9 . Inj1 x7) (λ x8 x9 . setsum x6 0) (λ x8 . 0))(∀ x4 : ι → ι . ∀ x5 x6 x7 . x1 (λ x8 : (ι → ι → ι → ι) → ι . λ x9 . Inj0 (Inj0 (setsum x7 (setsum 0 0)))) (λ x8 x9 . x7) (λ x8 . 0)x3 (λ x8 . 0) 0 (λ x8 : (ι → ι)ι → ι . setsum (setsum 0 (x8 (λ x9 . x7) 0))))(∀ x4 x5 . ∀ x6 : ι → ι . ∀ x7 . x0 (λ x8 . x5) (Inj0 0)x0 (λ x8 . setsum x5 (Inj1 (Inj1 (x6 0)))) (setsum (Inj1 (setsum 0 (Inj1 0))) (setsum (x6 x7) (Inj1 (Inj0 0)))))(∀ x4 . ∀ x5 : ((ι → ι)ι → ι → ι)(ι → ι) → ι . ∀ x6 : ι → ι → ι → ι → ι . ∀ x7 : ι → ι . x0 (λ x8 . setsum (setsum (setsum x8 (x6 0 0 0 0)) x8) (setsum 0 0)) (setsum (x5 (λ x8 : ι → ι . λ x9 x10 . setsum x9 (setsum 0 0)) (λ x8 . x8)) (setsum (x6 (setsum 0 0) (setsum 0 0) (Inj1 0) (x7 0)) (setsum 0 (x6 0 0 0 0))))False)False) (proof)
Theorem 91710.. : not (∀ x0 : (ι → ι)(ι → ι)ι → ο . ∀ x1 : (ι → ι)(ι → ι)(ι → (ι → ι)ι → ι) → ο . ∀ x2 : (ι → ι)((((ι → ι)ι → ι)(ι → ι)ι → ι) → ι) → ο . ∀ x3 : ((ι → ((ι → ι)ι → ι)(ι → ι) → ι) → ι)((ι → (ι → ι) → ι)ι → ι → ι) → ο . (∀ x4 . ∀ x5 : (ι → ι)ι → ι . ∀ x6 : (((ι → ι)ι → ι) → ι) → ι . ∀ x7 . x2 (λ x8 . x7) (λ x8 : ((ι → ι)ι → ι)(ι → ι)ι → ι . x8 (λ x9 : ι → ι . λ x10 . setsum (x8 (λ x11 : ι → ι . λ x12 . setsum 0 0) (λ x11 . x8 (λ x12 : ι → ι . λ x13 . 0) (λ x12 . 0) 0) 0) (setsum (setsum 0 0) x10)) (λ x9 . Inj1 0) 0)x3 (λ x8 : ι → ((ι → ι)ι → ι)(ι → ι) → ι . setsum (Inj0 (x6 (λ x9 : (ι → ι)ι → ι . 0))) (Inj1 0)) (λ x8 : ι → (ι → ι) → ι . λ x9 x10 . x8 x7 (λ x11 . setsum (x8 (Inj0 0) (λ x12 . x11)) (Inj1 x11))))(∀ x4 : (((ι → ι) → ι)(ι → ι) → ι)(ι → ι → ι)ι → ι → ι . ∀ x5 x6 x7 . In (Inj1 x5) (x4 (λ x8 : (ι → ι) → ι . λ x9 : ι → ι . Inj1 (setsum (setsum 0 0) 0)) (λ x8 x9 . x9) 0 (setsum 0 x6))x3 (λ x8 : ι → ((ι → ι)ι → ι)(ι → ι) → ι . setsum x6 x6) (λ x8 : ι → (ι → ι) → ι . λ x9 x10 . setsum (setsum (Inj1 (Inj1 0)) 0) (Inj0 (Inj0 x7)))x1 (λ x8 . setsum 0 0) (λ x8 . setsum (setsum (setsum (Inj0 0) (Inj1 0)) x5) x7) (λ x8 . λ x9 : ι → ι . λ x10 . 0))(∀ x4 x5 x6 x7 . In (setsum (Inj1 (Inj0 (Inj1 0))) x5) (Inj1 0)x2 (λ x8 . setsum (Inj1 0) (Inj1 (setsum 0 (setsum 0 0)))) (λ x8 : ((ι → ι)ι → ι)(ι → ι)ι → ι . Inj1 0))(∀ x4 : ι → (ι → ι) → ι . ∀ x5 x6 x7 . x2 (λ x8 . Inj0 0) (λ x8 : ((ι → ι)ι → ι)(ι → ι)ι → ι . 0)x0 (λ x8 . x8) (λ x8 . 0) (setsum (Inj1 (Inj1 x7)) (setsum (Inj0 (Inj0 0)) (Inj1 (setsum 0 0)))))(∀ x4 : ι → ι → ι . ∀ x5 : (ι → ι → ι → ι)(ι → ι → ι)ι → ι . ∀ x6 . ∀ x7 : ι → ι . x1 (λ x8 . Inj0 (Inj0 (setsum (setsum 0 0) (setsum 0 0)))) (λ x8 . x8) (λ x8 . λ x9 : ι → ι . λ x10 . Inj0 (x9 0)))(∀ x4 . ∀ x5 x6 : ι → ι → ι . ∀ x7 . In x7 (setsum x7 (x5 (x5 (x6 0 0) (setsum 0 0)) (x5 (x6 0 0) 0)))x1 (λ x8 . x7) (λ x8 . 0) (λ x8 . λ x9 : ι → ι . λ x10 . x8)x3 (λ x8 : ι → ((ι → ι)ι → ι)(ι → ι) → ι . Inj1 (Inj1 (setsum (setsum 0 0) (Inj0 0)))) (λ x8 : ι → (ι → ι) → ι . λ x9 x10 . setsum x9 x7))(∀ x4 : (((ι → ι) → ι) → ι) → ι . ∀ x5 : ((ι → ι → ι)(ι → ι)ι → ι)(ι → ι → ι)ι → ι . ∀ x6 : ι → ι → ι . ∀ x7 : (ι → ι)((ι → ι) → ι)ι → ι → ι . x0 (λ x8 . Inj0 (Inj1 0)) (λ x8 . Inj0 (x7 (λ x9 . setsum 0 (Inj0 0)) (λ x9 : ι → ι . Inj1 0) x8 0)) (Inj0 (setsum 0 (x4 (λ x8 : (ι → ι) → ι . Inj1 0)))))(∀ x4 . ∀ x5 : (((ι → ι) → ι)(ι → ι) → ι)ι → ι . ∀ x6 : (((ι → ι)ι → ι) → ι) → ι . ∀ x7 : ((ι → ι → ι)(ι → ι) → ι)ι → ι → ι . In (x7 (λ x8 : ι → ι → ι . λ x9 : ι → ι . x8 (setsum (setsum 0 0) (setsum 0 0)) (Inj1 (x6 (λ x10 : (ι → ι)ι → ι . 0)))) 0 0) (Inj1 (x6 (λ x8 : (ι → ι)ι → ι . x6 (λ x9 : (ι → ι)ι → ι . setsum 0 0))))x0 (λ x8 . 0) (λ x8 . 0) (Inj0 0)x2 (λ x8 . setsum 0 (setsum (Inj1 0) (setsum (Inj0 0) (Inj0 0)))) (λ x8 : ((ι → ι)ι → ι)(ι → ι)ι → ι . x5 (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . Inj1 (setsum (setsum 0 0) 0)) (x5 (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . setsum 0 (x10 0)) (setsum (Inj0 0) (Inj0 0)))))False) (proof)
Theorem 05d15.. : not (∀ x0 : ((ι → ι → (ι → ι)ι → ι) → ι)(ι → (ι → ι)(ι → ι)ι → ι)(ι → ι)ι → ο . ∀ x1 : ((ι → ι)ι → ι → (ι → ι)ι → ι)((((ι → ι)ι → ι)(ι → ι)ι → ι)((ι → ι) → ι)(ι → ι) → ι)(((ι → ι)ι → ι)(ι → ι) → ι) → ο . ∀ x2 : (ι → ι)(ι → ι) → ο . ∀ x3 : (ι → ι)ι → ο . (∀ x4 x5 x6 x7 . In (setsum (Inj0 0) 0) (Inj0 (Inj1 x5))x3 (λ x8 . setsum x8 (setsum (setsum (Inj0 0) 0) (setsum 0 x5))) x4)(∀ x4 : ((ι → ι → ι)ι → ι) → ι . ∀ x5 : ι → ι . ∀ x6 : ((ι → ι → ι)(ι → ι)ι → ι)ι → (ι → ι) → ι . ∀ x7 : ι → ι . x3 (λ x8 . setsum (Inj0 (Inj1 (x6 (λ x9 : ι → ι → ι . λ x10 : ι → ι . λ x11 . 0) 0 (λ x9 . 0)))) (Inj1 (setsum (setsum 0 0) (Inj0 0)))) (x5 0)x1 (λ x8 : ι → ι . λ x9 x10 . λ x11 : ι → ι . λ x12 . Inj0 x9) (λ x8 : ((ι → ι)ι → ι)(ι → ι)ι → ι . λ x9 : (ι → ι) → ι . λ x10 : ι → ι . x9 (λ x11 . setsum 0 (Inj1 0))) (λ x8 : (ι → ι)ι → ι . λ x9 : ι → ι . Inj1 (setsum (setsum (x6 (λ x10 : ι → ι → ι . λ x11 : ι → ι . λ x12 . 0) 0 (λ x10 . 0)) (setsum 0 0)) 0)))(∀ x4 : ι → ι → (ι → ι)ι → ι . ∀ x5 x6 x7 . In (Inj1 (setsum 0 (Inj1 (x4 0 0 (λ x8 . 0) 0)))) (setsum (setsum (Inj0 (Inj1 0)) 0) x5)x1 (λ x8 : ι → ι . λ x9 x10 . λ x11 : ι → ι . λ x12 . Inj1 0) (λ x8 : ((ι → ι)ι → ι)(ι → ι)ι → ι . λ x9 : (ι → ι) → ι . λ x10 : ι → ι . Inj1 (x10 (setsum (x10 0) (setsum 0 0)))) (λ x8 : (ι → ι)ι → ι . λ x9 : ι → ι . 0)x2 (λ x8 . Inj1 x7) (setsum (Inj1 (Inj0 (setsum 0 0)))))(∀ x4 : (ι → ι) → ι . ∀ x5 x6 . ∀ x7 : (ι → ι → ι)(ι → ι → ι) → ι . In (x7 (λ x8 x9 . 0) (λ x8 x9 . Inj1 (setsum (x7 (λ x10 x11 . 0) (λ x10 x11 . 0)) (setsum 0 0)))) (Inj0 0)x2 (λ x8 . 0) (λ x8 . 0)x0 (λ x8 : ι → ι → (ι → ι)ι → ι . Inj1 (Inj1 0)) (λ x8 . λ x9 x10 : ι → ι . λ x11 . setsum (Inj1 (Inj1 (setsum 0 0))) (x9 0)) (λ x8 . 0) (Inj1 (x4 (λ x8 . x8))))(∀ x4 . ∀ x5 : ι → ((ι → ι) → ι) → ι . ∀ x6 : ι → ι . ∀ x7 . x2 (λ x8 . 0) (λ x8 . 0)x1 (λ x8 : ι → ι . λ x9 x10 . λ x11 : ι → ι . λ x12 . 0) (λ x8 : ((ι → ι)ι → ι)(ι → ι)ι → ι . λ x9 : (ι → ι) → ι . λ x10 : ι → ι . 0) (λ x8 : (ι → ι)ι → ι . λ x9 : ι → ι . setsum (setsum (setsum (setsum 0 0) (setsum 0 0)) (Inj0 0)) (Inj1 0)))(∀ x4 . ∀ x5 : (ι → ι → ι)((ι → ι) → ι)(ι → ι) → ι . ∀ x6 : ι → ι . ∀ x7 : ((ι → ι)ι → ι → ι) → ι . x1 (λ x8 : ι → ι . λ x9 x10 . λ x11 : ι → ι . λ x12 . x11 (Inj1 (Inj0 x10))) (λ x8 : ((ι → ι)ι → ι)(ι → ι)ι → ι . λ x9 : (ι → ι) → ι . λ x10 : ι → ι . 0) (λ x8 : (ι → ι)ι → ι . λ x9 : ι → ι . 0)x3 (λ x8 . 0) (Inj0 (Inj1 (x5 (λ x8 x9 . 0) (λ x8 : ι → ι . setsum 0 0) (λ x8 . 0)))))(∀ x4 : ι → ι → ι . ∀ x5 : ι → (ι → ι) → ι . ∀ x6 : (((ι → ι)ι → ι)ι → ι)ι → (ι → ι) → ι . ∀ x7 : ι → ι . In (Inj0 (Inj1 0)) (x5 (Inj0 (setsum 0 0)) (λ x8 . 0))x0 (λ x8 : ι → ι → (ι → ι)ι → ι . 0) (λ x8 . λ x9 x10 : ι → ι . λ x11 . setsum (Inj0 (x10 (setsum 0 0))) (Inj0 x11)) (λ x8 . x6 (λ x9 : (ι → ι)ι → ι . λ x10 . setsum (setsum (x7 0) (Inj0 0)) 0) 0 (λ x9 . setsum (setsum (Inj1 0) (setsum 0 0)) (setsum x9 (x6 (λ x10 : (ι → ι)ι → ι . λ x11 . 0) 0 (λ x10 . 0))))) (setsum (setsum 0 (setsum (setsum 0 0) (setsum 0 0))) (Inj0 0)))(∀ x4 : (((ι → ι)ι → ι)ι → ι → ι) → ι . ∀ x5 x6 . ∀ x7 : ((ι → ι → ι) → ι) → ι . x0 (λ x8 : ι → ι → (ι → ι)ι → ι . Inj1 x6) (λ x8 . λ x9 x10 : ι → ι . λ x11 . 0) (λ x8 . Inj0 (setsum (Inj1 (setsum 0 0)) 0)) (Inj0 x5)x2 (λ x8 . x6) (λ x8 . x7 (λ x9 : ι → ι → ι . setsum (setsum x6 (setsum 0 0)) 0)))False) (proof)
Theorem 6993e.. : not (∀ x0 : ((((ι → ι → ι)(ι → ι)ι → ι)((ι → ι)ι → ι) → ι) → ι)ι → ι → ((ι → ι) → ι)ι → ο . ∀ x1 : (ι → ι → (ι → ι) → ι)(ι → ι) → ο . ∀ x2 : (ι → ι → ι)((ι → ι) → ι)((ι → ι → ι)ι → ι → ι)ι → ο . ∀ x3 : ((ι → ι → ι)ι → ι)ι → (((ι → ι) → ι) → ι) → ο . (∀ x4 x5 x6 . ∀ x7 : (ι → (ι → ι)ι → ι) → ι . In (Inj0 0) x6x0 (λ x8 : ((ι → ι → ι)(ι → ι)ι → ι)((ι → ι)ι → ι) → ι . setsum (setsum (setsum (x7 (λ x9 . λ x10 : ι → ι . λ x11 . 0)) (x7 (λ x9 . λ x10 : ι → ι . λ x11 . 0))) (setsum 0 0)) x5) (setsum (Inj1 0) (x7 (λ x8 . λ x9 : ι → ι . λ x10 . Inj1 (Inj1 0)))) (Inj1 0) (λ x8 : ι → ι . x7 (λ x9 . λ x10 : ι → ι . λ x11 . 0)) (Inj0 x5)x3 (λ x8 : ι → ι → ι . λ x9 . x8 (Inj0 0) (Inj0 0)) x5 (λ x8 : (ι → ι) → ι . 0))(∀ x4 : ι → ι . ∀ x5 : (ι → ι) → ι . ∀ x6 x7 . x3 (λ x8 : ι → ι → ι . λ x9 . Inj0 x6) (setsum (setsum (setsum (Inj0 0) (setsum 0 0)) 0) (setsum 0 (x5 (λ x8 . setsum 0 0)))) (λ x8 : (ι → ι) → ι . x8 (λ x9 . Inj1 (setsum 0 (setsum 0 0))))x1 (λ x8 x9 . λ x10 : ι → ι . x7) (λ x8 . setsum (Inj0 (setsum (Inj0 0) 0)) x7))(∀ x4 : (ι → ι → ι)((ι → ι)ι → ι)(ι → ι) → ι . ∀ x5 : ι → ι . ∀ x6 : ι → ((ι → ι) → ι) → ι . ∀ x7 : ι → (ι → ι) → ι . x2 (λ x8 x9 . Inj1 0) (λ x8 : ι → ι . setsum 0 (x7 (Inj1 (setsum 0 0)) (λ x9 . Inj1 (setsum 0 0)))) (λ x8 : ι → ι → ι . λ x9 x10 . x7 (Inj0 x9) (λ x11 . x8 (setsum (Inj0 0) (Inj1 0)) x10)) 0x2 (λ x8 x9 . 0) (λ x8 : ι → ι . Inj0 0) (λ x8 : ι → ι → ι . λ x9 x10 . Inj1 (Inj0 (Inj0 (Inj1 0)))) (x7 (x4 (λ x8 x9 . setsum 0 (Inj0 0)) (λ x8 : ι → ι . λ x9 . x6 0 (λ x10 : ι → ι . x7 0 (λ x11 . 0))) (λ x8 . Inj1 0)) (λ x8 . Inj1 (Inj0 (Inj1 0)))))(∀ x4 : ι → ι → (ι → ι)ι → ι . ∀ x5 : ι → ι . ∀ x6 : ι → ι → ι → ι → ι . ∀ x7 : ι → (ι → ι → ι)ι → ι → ι . x2 (λ x8 x9 . setsum x9 x9) (λ x8 : ι → ι . 0) (λ x8 : ι → ι → ι . λ x9 x10 . Inj0 (Inj0 (setsum 0 (x7 0 (λ x11 x12 . 0) 0 0)))) (Inj0 (Inj0 (Inj1 (setsum 0 0))))x1 (λ x8 x9 . λ x10 : ι → ι . Inj1 x8) (λ x8 . setsum (Inj0 (x5 (Inj0 0))) (x6 0 x8 x8 (Inj0 (setsum 0 0)))))(∀ x4 . ∀ x5 : ι → ((ι → ι)ι → ι)(ι → ι) → ι . ∀ x6 x7 . x2 (λ x8 x9 . setsum 0 (Inj1 0)) (λ x8 : ι → ι . x6) (λ x8 : ι → ι → ι . λ x9 x10 . x9) 0x1 (λ x8 x9 . λ x10 : ι → ι . setsum (Inj0 (setsum (x10 0) (setsum 0 0))) (setsum (setsum x7 (Inj1 0)) 0)) (λ x8 . 0))(∀ x4 : (ι → ι) → ι . ∀ x5 . ∀ x6 : ι → ι . ∀ x7 : ι → (ι → ι) → ι . In (Inj1 0) (setsum 0 (x4 (λ x8 . x8)))x1 (λ x8 x9 . λ x10 : ι → ι . x7 (Inj1 0) (λ x11 . 0)) (λ x8 . 0)x1 (λ x8 x9 . λ x10 : ι → ι . x7 (setsum (setsum x9 0) x9) (λ x11 . setsum 0 x9)) (setsum (setsum 0 (Inj1 (setsum 0 0)))))(∀ x4 x5 x6 . ∀ x7 : ((ι → ι) → ι) → ι . In (Inj0 0) (setsum 0 (setsum (setsum (Inj0 0) (x7 (λ x8 : ι → ι . 0))) (setsum (setsum 0 0) (setsum 0 0))))x0 (λ x8 : ((ι → ι → ι)(ι → ι)ι → ι)((ι → ι)ι → ι) → ι . x8 (λ x9 : ι → ι → ι . λ x10 : ι → ι . λ x11 . 0) (λ x9 : ι → ι . λ x10 . Inj0 (Inj1 (setsum 0 0)))) (setsum 0 (Inj1 (setsum 0 (Inj0 0)))) (x7 (λ x8 : ι → ι . Inj1 (Inj1 x6))) (λ x8 : ι → ι . Inj0 (x8 x5)) 0x0 (λ x8 : ((ι → ι → ι)(ι → ι)ι → ι)((ι → ι)ι → ι) → ι . 0) (Inj0 (setsum x5 x6)) 0 (λ x8 : ι → ι . setsum (Inj1 (setsum 0 0)) (Inj0 x6)) 0)(∀ x4 : (ι → ι → ι) → ι . ∀ x5 x6 . ∀ x7 : ι → ι → ι . In (setsum 0 0) (Inj1 (Inj1 (Inj0 (Inj0 0))))x0 (λ x8 : ((ι → ι → ι)(ι → ι)ι → ι)((ι → ι)ι → ι) → ι . Inj0 0) (Inj1 (setsum 0 (Inj1 (Inj0 0)))) x5 (λ x8 : ι → ι . setsum x6 x5) (setsum (setsum (setsum 0 0) 0) 0)x3 (λ x8 : ι → ι → ι . λ x9 . Inj0 0) 0 (λ x8 : (ι → ι) → ι . setsum 0 (setsum (x7 (x7 0 0) (setsum 0 0)) (x7 (setsum 0 0) (setsum 0 0)))))False) (proof)
Theorem 30bb5.. : not (∀ x0 : ((ι → ((ι → ι)ι → ι)ι → ι) → ι)(ι → ι → ι → ι)((ι → ι → ι) → ι)((ι → ι) → ι)(ι → ι) → ο . ∀ x1 : (ι → ι)((ι → ι → ι → ι) → ι) → ο . ∀ x2 : ((ι → ι → ι)ι → ι → ι → ι)(ι → ι)ι → ο . ∀ x3 : (ι → ((ι → ι → ι)(ι → ι) → ι)ι → ι)ι → ι → ο . (∀ x4 x5 x6 . ∀ x7 : (((ι → ι) → ι) → ι) → ι . x3 (λ x8 . λ x9 : (ι → ι → ι)(ι → ι) → ι . λ x10 . setsum (setsum (setsum (Inj1 0) (Inj0 0)) (x9 (λ x11 x12 . x10) (λ x11 . Inj1 0))) (x7 (λ x11 : (ι → ι) → ι . x9 (λ x12 x13 . Inj0 0) (λ x12 . 0)))) (setsum (setsum (Inj1 (setsum 0 0)) 0) (Inj1 (Inj1 (setsum 0 0)))) (setsum (setsum (Inj0 (setsum 0 0)) (Inj1 0)) (Inj0 (Inj0 (setsum 0 0)))))(∀ x4 . ∀ x5 : ι → (ι → ι → ι)(ι → ι)ι → ι . ∀ x6 x7 . x3 (λ x8 . λ x9 : (ι → ι → ι)(ι → ι) → ι . λ x10 . setsum 0 (setsum (setsum x8 (Inj0 0)) (Inj1 (setsum 0 0)))) (Inj1 x7) (x5 x4 (λ x8 x9 . x7) (λ x8 . setsum x6 0) (x5 (x5 (setsum 0 0) (λ x8 x9 . Inj1 0) (λ x8 . Inj1 0) (Inj0 0)) (λ x8 x9 . Inj1 (setsum 0 0)) (λ x8 . setsum 0 0) 0))x1 (λ x8 . Inj1 0) (λ x8 : ι → ι → ι → ι . x5 (Inj0 (Inj0 0)) (λ x9 x10 . setsum 0 0) (λ x9 . x6) (setsum (x8 0 x7 (Inj0 0)) (x5 0 (λ x9 x10 . Inj1 0) (λ x9 . Inj1 0) (setsum 0 0)))))(∀ x4 . ∀ x5 : (ι → ι) → ι . ∀ x6 : ι → ι . ∀ x7 . x2 (λ x8 : ι → ι → ι . λ x9 x10 x11 . 0) (λ x8 . x7) (x6 (setsum (Inj0 0) (setsum (setsum 0 0) 0))))(∀ x4 : ι → ι . ∀ x5 . ∀ x6 : ι → ι . ∀ x7 : (((ι → ι) → ι) → ι)(ι → ι → ι) → ι . In (Inj0 (Inj1 (setsum (setsum 0 0) (setsum 0 0)))) (setsum 0 0)x2 (λ x8 : ι → ι → ι . λ x9 x10 x11 . Inj0 (setsum (Inj0 (Inj0 0)) 0)) (λ x8 . x7 (λ x9 : (ι → ι) → ι . Inj1 (setsum 0 0)) (λ x9 x10 . Inj1 x9)) (setsum x5 0)x1 (λ x8 . setsum 0 (x7 (λ x9 : (ι → ι) → ι . x6 (setsum 0 0)) (λ x9 x10 . Inj1 (setsum 0 0)))) (λ x8 : ι → ι → ι → ι . Inj0 (Inj0 (Inj0 (Inj0 0)))))(∀ x4 : ((ι → ι)(ι → ι)ι → ι)ι → ι . ∀ x5 x6 x7 . In (setsum (setsum (x4 (λ x8 x9 : ι → ι . λ x10 . 0) x5) (setsum (Inj0 0) x6)) 0) (Inj0 (setsum (Inj0 (Inj1 0)) x5))x3 (λ x8 . λ x9 : (ι → ι → ι)(ι → ι) → ι . λ x10 . 0) 0 x7x1 (λ x8 . 0) (λ x8 : ι → ι → ι → ι . 0))(∀ x4 . ∀ x5 : ι → ι . ∀ x6 . ∀ x7 : (ι → ι)ι → ι → ι . x1 (λ x8 . 0) (λ x8 : ι → ι → ι → ι . x6)x0 (λ x8 : ι → ((ι → ι)ι → ι)ι → ι . x7 (λ x9 . Inj0 (Inj1 0)) (x8 (Inj1 (setsum 0 0)) (λ x9 : ι → ι . λ x10 . 0) (x8 (setsum 0 0) (λ x9 : ι → ι . λ x10 . x9 0) 0)) (x7 (λ x9 . setsum (setsum 0 0) (Inj1 0)) (Inj0 (setsum 0 0)) x6)) (λ x8 x9 . Inj0) (λ x8 : ι → ι → ι . Inj0 (setsum (setsum (Inj1 0) (setsum 0 0)) (setsum (Inj1 0) 0))) (λ x8 : ι → ι . x6) (λ x8 . x6))(∀ x4 . ∀ x5 : ι → ι → ι . ∀ x6 : ι → ι . ∀ x7 . In (setsum 0 (setsum (setsum (Inj0 0) (setsum 0 0)) 0)) (Inj1 (Inj1 x7))x0 (λ x8 : ι → ((ι → ι)ι → ι)ι → ι . 0) (λ x8 x9 x10 . Inj0 (Inj1 x8)) (λ x8 : ι → ι → ι . 0) (λ x8 : ι → ι . x6 (setsum 0 (Inj1 (x8 0)))) (λ x8 . Inj1 (Inj1 (Inj0 (x5 0 0)))))(∀ x4 x5 x6 . ∀ x7 : ι → ((ι → ι) → ι)ι → ι . x0 (λ x8 : ι → ((ι → ι)ι → ι)ι → ι . x8 (x8 (setsum (Inj1 0) (x8 0 (λ x9 : ι → ι . λ x10 . 0) 0)) (λ x9 : ι → ι . λ x10 . Inj0 (x8 0 (λ x11 : ι → ι . λ x12 . 0) 0)) (setsum 0 0)) (λ x9 : ι → ι . λ x10 . 0) (setsum (Inj1 x6) x6)) (λ x8 x9 x10 . Inj1 (setsum (Inj0 (Inj1 0)) x9)) (λ x8 : ι → ι → ι . 0) (λ x8 : ι → ι . x8 x6) (λ x8 . setsum x8 (Inj1 (setsum x5 (setsum 0 0))))x0 (λ x8 : ι → ((ι → ι)ι → ι)ι → ι . x8 0 (λ x9 : ι → ι . λ x10 . Inj0 (setsum 0 0)) (setsum x6 (Inj1 (Inj1 0)))) (λ x8 x9 x10 . 0) (λ x8 : ι → ι → ι . Inj1 (setsum x5 0)) (λ x8 : ι → ι . 0) (λ x8 . setsum 0 0))False) (proof)
Theorem 6c860.. : not (∀ x0 : (ι → ι → ι)ι → ο . ∀ x1 : (ι → ι)ι → ο . ∀ x2 : (ι → ι → ι)((ι → ι)(ι → ι → ι) → ι)ι → ο . ∀ x3 : (ι → ι → ι → ι)ι → ο . (∀ x4 : ι → ι → ι . ∀ x5 : ι → ι . ∀ x6 : (ι → ι)ι → (ι → ι) → ι . ∀ x7 . x2 (λ x8 x9 . setsum 0 (setsum (setsum x8 (x6 (λ x10 . 0) 0 (λ x10 . 0))) x7)) (λ x8 : ι → ι . λ x9 : ι → ι → ι . x6 (λ x10 . Inj0 (setsum 0 0)) (setsum (Inj1 0) (setsum (Inj1 0) (x8 0))) (λ x10 . 0)) x7x3 (λ x8 x9 x10 . x9) 0)(∀ x4 x5 . ∀ x6 : (ι → (ι → ι)ι → ι) → ι . ∀ x7 . In (Inj0 0) (Inj1 (setsum 0 (setsum 0 (setsum 0 0))))x3 (λ x8 x9 x10 . Inj1 (Inj0 0)) (Inj1 0)x1 (λ x8 . 0) (Inj1 (Inj0 (Inj0 (Inj0 0)))))(∀ x4 x5 x6 . ∀ x7 : ι → ι . In (Inj0 0) (Inj0 (Inj0 (Inj1 (Inj0 0))))x2 (λ x8 x9 . 0) (λ x8 : ι → ι . λ x9 : ι → ι → ι . setsum (Inj1 (setsum (Inj0 0) 0)) x6) 0)(∀ x4 : ι → ι . ∀ x5 : (ι → ι → ι)ι → ι . ∀ x6 . ∀ x7 : ι → (ι → ι → ι)(ι → ι)ι → ι . In (Inj0 (setsum 0 (setsum 0 (Inj0 0)))) x6x2 (λ x8 x9 . setsum 0 x6) (λ x8 : ι → ι . λ x9 : ι → ι → ι . Inj0 (x9 0 0)) (setsum (x5 (λ x8 x9 . Inj1 0) (x5 (λ x8 x9 . x9) (setsum 0 0))) 0)x0 (λ x8 x9 . setsum (setsum x9 (setsum (setsum 0 0) 0)) x6) (setsum (setsum (x7 (Inj1 0) (λ x8 x9 . setsum 0 0) (λ x8 . setsum 0 0) 0) (setsum (Inj0 0) (setsum 0 0))) (setsum (Inj1 (Inj1 0)) (setsum (x4 0) (Inj0 0)))))(∀ x4 : (((ι → ι)ι → ι)ι → ι)ι → ι → ι → ι . ∀ x5 : ι → (ι → ι) → ι . ∀ x6 x7 . x1 (λ x8 . 0) (Inj1 0))(∀ x4 x5 x6 x7 . x1 (λ x8 . 0) x5x1 (λ x8 . x6) 0)(∀ x4 x5 x6 x7 . In (Inj1 (Inj0 (Inj1 0))) (Inj1 (Inj1 0))x0 (λ x8 x9 . x7) (setsum 0 0))(∀ x4 . ∀ x5 x6 : ι → ι . ∀ x7 . x0 (λ x8 x9 . 0) (x5 (Inj0 (Inj0 0)))x3 (λ x8 x9 x10 . 0) 0)False) (proof)
Theorem 1b96e.. : not (∀ x0 : ((((ι → ι)ι → ι → ι) → ι)(ι → ι → ι → ι) → ι)(ι → ι) → ο . ∀ x1 : (ι → (ι → ι) → ι)ι → ο . ∀ x2 : (ι → ι)ι → (((ι → ι)ι → ι) → ι) → ο . ∀ x3 : (ι → ι)((((ι → ι)ι → ι)ι → ι → ι)ι → ι) → ο . (∀ x4 : ι → ι → (ι → ι) → ι . ∀ x5 . ∀ x6 : ι → ι . ∀ x7 . x0 (λ x8 : ((ι → ι)ι → ι → ι) → ι . λ x9 : ι → ι → ι → ι . setsum 0 (x9 (setsum (setsum 0 0) (setsum 0 0)) (Inj1 0) 0)) (λ x8 . x7)x3 (λ x8 . Inj0 (x6 (setsum (Inj0 0) (x6 0)))) (λ x8 : ((ι → ι)ι → ι)ι → ι → ι . λ x9 . x7))(∀ x4 : (ι → ι) → ι . ∀ x5 : ι → ((ι → ι) → ι)ι → ι → ι . ∀ x6 . ∀ x7 : (ι → ι)ι → ι . x3 (λ x8 . setsum (Inj0 0) (Inj0 0)) (λ x8 : ((ι → ι)ι → ι)ι → ι → ι . λ x9 . 0)x1 (λ x8 . λ x9 : ι → ι . 0) (Inj1 0))(∀ x4 : ((ι → ι → ι)(ι → ι) → ι) → ι . ∀ x5 : (ι → (ι → ι) → ι)((ι → ι)ι → ι)(ι → ι) → ι . ∀ x6 x7 . In (Inj1 0) (setsum x7 (Inj0 (setsum 0 (x4 (λ x8 : ι → ι → ι . λ x9 : ι → ι . 0)))))x2 (λ x8 . setsum (Inj1 0) (Inj0 0)) (Inj1 (setsum 0 0)) (λ x8 : (ι → ι)ι → ι . setsum (setsum 0 (Inj1 (Inj0 0))) (setsum x6 0))x2 (λ x8 . 0) x7 (λ x8 : (ι → ι)ι → ι . 0))(∀ x4 . ∀ x5 : ι → ι → (ι → ι)ι → ι . ∀ x6 x7 . In x7 (Inj1 (setsum (setsum (setsum 0 0) (setsum 0 0)) (x5 (setsum 0 0) (setsum 0 0) (λ x8 . 0) 0)))x2 (λ x8 . Inj1 x6) (x5 (Inj0 (setsum x6 0)) x7 (λ x8 . x7) x4) (λ x8 : (ι → ι)ι → ι . Inj1 x7)x0 (λ x8 : ((ι → ι)ι → ι → ι) → ι . λ x9 : ι → ι → ι → ι . 0) (λ x8 . x8))(∀ x4 : (((ι → ι) → ι)ι → ι → ι)ι → (ι → ι)ι → ι . ∀ x5 : (ι → ι) → ι . ∀ x6 : (((ι → ι) → ι)ι → ι)ι → (ι → ι) → ι . ∀ x7 : ι → ι . In (setsum (setsum (x6 (λ x8 : (ι → ι) → ι . λ x9 . setsum 0 0) (setsum 0 0) (λ x8 . setsum 0 0)) (Inj0 (setsum 0 0))) (setsum 0 (Inj0 (Inj1 0)))) (x6 (λ x8 : (ι → ι) → ι . x7) 0 (λ x8 . 0))x1 (λ x8 . λ x9 : ι → ι . x9 0) (Inj1 (setsum (x7 (Inj0 0)) (x7 (setsum 0 0)))))(∀ x4 . ∀ x5 : ((ι → ι)ι → ι → ι) → ι . ∀ x6 x7 . In (setsum x4 x7) (Inj1 (setsum (setsum (setsum 0 0) 0) x4))x1 (λ x8 . λ x9 : ι → ι . 0) 0x3 (λ x8 . x7) (λ x8 : ((ι → ι)ι → ι)ι → ι → ι . λ x9 . setsum 0 x6))(∀ x4 : (ι → ι → ι)(ι → ι) → ι . ∀ x5 . ∀ x6 : ι → ι → ι → ι → ι . ∀ x7 . x0 (λ x8 : ((ι → ι)ι → ι → ι) → ι . λ x9 : ι → ι → ι → ι . 0) (λ x8 . 0)x0 (λ x8 : ((ι → ι)ι → ι → ι) → ι . λ x9 : ι → ι → ι → ι . Inj0 (setsum x7 x7)) (λ x8 . Inj1 (Inj1 0)))(∀ x4 x5 x6 : ι → ι . ∀ x7 . x0 (λ x8 : ((ι → ι)ι → ι → ι) → ι . λ x9 : ι → ι → ι → ι . x7) (λ x8 . Inj1 0)In x7 (x4 (setsum 0 (x4 (Inj0 0)))))False) (proof)
Theorem c13a6.. : not (∀ x0 : (ι → ((ι → ι → ι) → ι) → ι)((((ι → ι) → ι)ι → ι → ι) → ι) → ο . ∀ x1 : (ι → ι → ι)((((ι → ι) → ι) → ι)ι → ι)(ι → ι)(ι → ι)ι → ο . ∀ x2 : ((((ι → ι) → ι) → ι) → ι)ι → (ι → ι)(ι → ι) → ο . ∀ x3 : (((ι → (ι → ι) → ι)(ι → ι)ι → ι)ι → (ι → ι → ι)ι → ι → ι)ι → ο . (∀ x4 x5 . ∀ x6 : (ι → ι)(ι → ι) → ι . ∀ x7 : ι → ι . In (x7 0) x4x0 (λ x8 . λ x9 : (ι → ι → ι) → ι . Inj1 (x6 (λ x10 . Inj0 0) (λ x10 . x10))) (λ x8 : ((ι → ι) → ι)ι → ι → ι . 0)x3 (λ x8 : (ι → (ι → ι) → ι)(ι → ι)ι → ι . λ x9 . λ x10 : ι → ι → ι . λ x11 x12 . Inj1 0) 0)(∀ x4 . ∀ x5 : ι → ((ι → ι)ι → ι) → ι . ∀ x6 . ∀ x7 : ι → ι . In (setsum 0 (Inj1 x6)) (Inj1 (Inj1 (x5 (Inj1 0) (λ x8 : ι → ι . λ x9 . 0))))x3 (λ x8 : (ι → (ι → ι) → ι)(ι → ι)ι → ι . λ x9 . λ x10 : ι → ι → ι . λ x11 x12 . Inj1 0) x4x2 (λ x8 : ((ι → ι) → ι) → ι . setsum (setsum (setsum (setsum 0 0) 0) (setsum (setsum 0 0) (Inj0 0))) 0) 0 (λ x8 . 0) (λ x8 . setsum (Inj0 (Inj1 (x5 0 (λ x9 : ι → ι . λ x10 . 0)))) 0))(∀ x4 . ∀ x5 x6 : ι → ι . ∀ x7 : (ι → (ι → ι)ι → ι) → ι . x0 (λ x8 . λ x9 : (ι → ι → ι) → ι . setsum 0 0) (λ x8 : ((ι → ι) → ι)ι → ι → ι . x7 (λ x9 . λ x10 : ι → ι . λ x11 . setsum (setsum (setsum 0 0) (Inj0 0)) (setsum (Inj1 0) (setsum 0 0))))x2 (λ x8 : ((ι → ι) → ι) → ι . x6 0) 0 (λ x8 . 0) (λ x8 . 0))(∀ x4 : ((ι → ι) → ι)ι → ι . ∀ x5 : (ι → ι) → ι . ∀ x6 : (ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x7 . x2 (λ x8 : ((ι → ι) → ι) → ι . x8 (λ x9 : ι → ι . x7)) 0 (λ x8 . Inj0 (x6 (λ x9 . setsum x8 (Inj0 0)) (λ x9 : ι → ι . λ x10 . setsum x7 (setsum 0 0)) (λ x9 . 0) 0)) (λ x8 . setsum x8 (Inj0 0))False)(∀ x4 : ι → ι . ∀ x5 : ι → ι → ι . ∀ x6 : (((ι → ι) → ι) → ι)(ι → ι)ι → ι → ι . ∀ x7 : ι → (ι → ι → ι)(ι → ι)ι → ι . x2 (λ x8 : ((ι → ι) → ι) → ι . Inj0 (setsum (x8 (λ x9 : ι → ι . Inj1 0)) 0)) 0 (λ x8 . 0) (λ x8 . Inj1 (Inj0 (setsum 0 (setsum 0 0))))x1 (λ x8 x9 . setsum 0 0) (λ x8 : ((ι → ι) → ι) → ι . λ x9 . Inj1 (setsum (setsum (x6 (λ x10 : (ι → ι) → ι . 0) (λ x10 . 0) 0 0) (setsum 0 0)) (setsum 0 (x8 (λ x10 : ι → ι . 0))))) (λ x8 . Inj0 (setsum (x6 (λ x9 : (ι → ι) → ι . x9 (λ x10 . 0)) (λ x9 . 0) 0 0) (x6 (λ x9 : (ι → ι) → ι . setsum 0 0) (λ x9 . x7 0 (λ x10 x11 . 0) (λ x10 . 0) 0) (x5 0 0) 0))) (λ x8 . setsum (Inj0 (setsum 0 0)) (Inj1 0)) (Inj1 (x5 (x7 (Inj0 0) (λ x8 x9 . setsum 0 0) (λ x8 . setsum 0 0) (x5 0 0)) (Inj1 (setsum 0 0)))))(∀ x4 : ((ι → ι → ι) → ι) → ι . ∀ x5 : ι → ((ι → ι) → ι) → ι . ∀ x6 : ι → ι . ∀ x7 . x1 (λ x8 x9 . 0) (λ x8 : ((ι → ι) → ι) → ι . λ x9 . Inj0 (x6 0)) (λ x8 . 0) (λ x8 . x7) (x6 0)x2 (λ x8 : ((ι → ι) → ι) → ι . 0) 0 (λ x8 . Inj1 (x5 x8 (λ x9 : ι → ι . 0))) (λ x8 . setsum (Inj0 x8) (x6 0)))(∀ x4 : (((ι → ι) → ι)ι → ι)(ι → ι)ι → ι . ∀ x5 x6 x7 . In (Inj0 x7) (Inj0 x5)x2 (λ x8 : ((ι → ι) → ι) → ι . x5) x7 (λ x8 . Inj0 (setsum (Inj1 (setsum 0 0)) 0)) (λ x8 . 0)x0 (λ x8 . λ x9 : (ι → ι → ι) → ι . x9 (λ x10 x11 . x9 (λ x12 x13 . x10))) (λ x8 : ((ι → ι) → ι)ι → ι → ι . Inj0 0))(∀ x4 . ∀ x5 : (ι → ι) → ι . ∀ x6 . ∀ x7 : ((ι → ι) → ι) → ι . In (Inj1 0) (Inj1 (setsum 0 0))x0 (λ x8 . λ x9 : (ι → ι → ι) → ι . Inj0 (setsum 0 (setsum (Inj0 0) (x9 (λ x10 x11 . 0))))) (λ x8 : ((ι → ι) → ι)ι → ι → ι . Inj1 0)x0 (λ x8 . λ x9 : (ι → ι → ι) → ι . Inj1 0) (λ x8 : ((ι → ι) → ι)ι → ι → ι . setsum 0 (x5 (λ x9 . 0))))False) (proof)
Theorem 29cb8.. : not (∀ x0 : ((ι → ι → (ι → ι)ι → ι) → ι)ι → (ι → ι)ι → ο . ∀ x1 : (ι → ι)(ι → (ι → ι → ι) → ι)((ι → ι → ι) → ι)ι → ο . ∀ x2 : (ι → ι)(((ι → ι → ι) → ι) → ι)ι → ο . ∀ x3 : (ι → (ι → ι) → ι)ι → ι → ο . (∀ x4 : (ι → ι) → ι . ∀ x5 : ι → ι . ∀ x6 : ((ι → ι)ι → ι) → ι . ∀ x7 : (ι → ι) → ι . In (Inj1 0) (Inj1 (x7 (λ x8 . setsum (Inj0 0) (Inj1 0))))x1 (λ x8 . Inj1 0) (λ x8 . λ x9 : ι → ι → ι . setsum (setsum (setsum (Inj1 0) 0) 0) (setsum (setsum (setsum 0 0) 0) (setsum 0 (x9 0 0)))) (λ x8 : ι → ι → ι . 0) (Inj0 (Inj0 (setsum 0 (x5 0))))x3 (λ x8 . λ x9 : ι → ι . x6 (λ x10 : ι → ι . λ x11 . x10 (Inj0 (x9 0)))) (x6 (λ x8 : ι → ι . λ x9 . x6 (λ x10 : ι → ι . λ x11 . setsum (setsum 0 0) (Inj1 0)))) (setsum (Inj0 0) 0))(∀ x4 . ∀ x5 : ((ι → ι → ι) → ι) → ι . ∀ x6 : ((ι → ι → ι) → ι)ι → ι . ∀ x7 . x3 (λ x8 . λ x9 : ι → ι . setsum (setsum x8 (setsum (Inj1 0) (setsum 0 0))) 0) (x5 (λ x8 : ι → ι → ι . x6 (λ x9 : ι → ι → ι . setsum 0 (setsum 0 0)) x7)) (x5 (λ x8 : ι → ι → ι . Inj0 0))In (Inj0 (setsum (setsum 0 0) (Inj0 (setsum 0 0)))) (Inj0 0))(∀ x4 : (ι → ι)((ι → ι) → ι) → ι . ∀ x5 x6 x7 . In (setsum (setsum 0 (setsum (x4 (λ x8 . 0) (λ x8 : ι → ι . 0)) x6)) (setsum (x4 (λ x8 . Inj1 0) (λ x8 : ι → ι . setsum 0 0)) 0)) (Inj1 (Inj1 (setsum (Inj1 0) 0)))x3 (λ x8 . λ x9 : ι → ι . 0) (Inj0 (setsum x5 x5)) 0x2 (λ x8 . 0) (λ x8 : (ι → ι → ι) → ι . Inj0 (x8 (λ x9 x10 . 0))) x6)(∀ x4 . ∀ x5 : (ι → ι → ι → ι)ι → ι . ∀ x6 . ∀ x7 : (ι → ι)ι → ι . In (setsum (setsum (setsum (x7 (λ x8 . 0) 0) 0) (x7 (λ x8 . Inj1 0) (setsum 0 0))) x6) (Inj0 x6)x2 (λ x8 . 0) (λ x8 : (ι → ι → ι) → ι . x5 (λ x9 x10 x11 . setsum (Inj1 x10) (Inj0 (Inj0 0))) (x5 (λ x9 x10 x11 . Inj0 0) 0)) (Inj1 (setsum (setsum x6 (Inj1 0)) (Inj0 (Inj0 0))))x0 (λ x8 : ι → ι → (ι → ι)ι → ι . x7 (λ x9 . 0) (setsum 0 0)) (setsum (Inj0 0) x6) (λ x8 . setsum (Inj0 (Inj0 (Inj0 0))) (setsum (x5 (λ x9 x10 x11 . Inj1 0) (setsum 0 0)) (setsum 0 0))) (Inj0 x6))(∀ x4 : ι → ι . ∀ x5 : ι → ((ι → ι) → ι)(ι → ι) → ι . ∀ x6 . ∀ x7 : ((ι → ι) → ι) → ι . x0 (λ x8 : ι → ι → (ι → ι)ι → ι . setsum (setsum (x5 (Inj1 0) (λ x9 : ι → ι . setsum 0 0) (λ x9 . setsum 0 0)) (x7 (λ x9 : ι → ι . setsum 0 0))) (setsum (setsum 0 (setsum 0 0)) (setsum (x5 0 (λ x9 : ι → ι . 0) (λ x9 . 0)) (x8 0 0 (λ x9 . 0) 0)))) x6 (λ x8 . Inj1 (Inj1 (x5 (x5 0 (λ x9 : ι → ι . 0) (λ x9 . 0)) (λ x9 : ι → ι . x8) (λ x9 . Inj1 0)))) 0x1 (λ x8 . setsum (setsum 0 0) 0) (λ x8 . λ x9 : ι → ι → ι . x9 x8 (x9 (Inj1 (setsum 0 0)) (Inj1 (x9 0 0)))) (λ x8 : ι → ι → ι . x6) (Inj1 0))(∀ x4 x5 x6 . ∀ x7 : (((ι → ι)ι → ι) → ι) → ι . x1 (λ x8 . x7 (λ x9 : (ι → ι)ι → ι . Inj1 (x7 (λ x10 : (ι → ι)ι → ι . x10 (λ x11 . 0) 0)))) (λ x8 . λ x9 : ι → ι → ι . Inj0 0) (λ x8 : ι → ι → ι . Inj1 (setsum 0 x6)) (setsum 0 (setsum (Inj1 0) 0))In (setsum 0 (setsum 0 (Inj1 (setsum 0 0)))) (Inj0 (setsum (Inj1 (Inj1 0)) (Inj0 (setsum 0 0)))))(∀ x4 . ∀ x5 : ι → ι . ∀ x6 x7 . x1 (λ x8 . 0) (λ x8 . λ x9 : ι → ι → ι . x7) (λ x8 : ι → ι → ι . x5 (setsum x7 (setsum (Inj1 0) 0))) x7x0 (λ x8 : ι → ι → (ι → ι)ι → ι . Inj0 (setsum (setsum x6 x6) x7)) 0 (λ x8 . x8) (Inj0 x7))(∀ x4 x5 : ι → ι . ∀ x6 : ((ι → ι)ι → ι) → ι . ∀ x7 . x0 (λ x8 : ι → ι → (ι → ι)ι → ι . setsum (setsum (Inj1 (x5 0)) 0) (x6 (λ x9 : ι → ι . λ x10 . Inj0 0))) (Inj1 x7) (λ x8 . x6 (λ x9 : ι → ι . λ x10 . x9 0)) x7In (x6 (λ x8 : ι → ι . λ x9 . setsum (Inj0 (Inj0 0)) (Inj0 (x8 0)))) (Inj1 (setsum (x4 (setsum 0 0)) (setsum (x6 (λ x8 : ι → ι . λ x9 . 0)) (Inj0 0)))))False) (proof)