Search for blocks/addresses/...
Proofgold Proposition
∀ x0 x1 x2 .
SNo
x1
⟶
(
∀ x3 .
x3
∈
SNoS_
(
SNoLev
x1
)
⟶
and
(
and
(
and
(
and
(
and
(
SNo
(
add_SNo
x0
x3
)
)
(
∀ x4 .
x4
∈
SNoL
x0
⟶
SNoLt
(
add_SNo
x4
x3
)
(
add_SNo
x0
x3
)
)
)
(
∀ x4 .
x4
∈
SNoR
x0
⟶
SNoLt
(
add_SNo
x0
x3
)
(
add_SNo
x4
x3
)
)
)
(
∀ x4 .
x4
∈
SNoL
x3
⟶
SNoLt
(
add_SNo
x0
x4
)
(
add_SNo
x0
x3
)
)
)
(
∀ x4 .
x4
∈
SNoR
x3
⟶
SNoLt
(
add_SNo
x0
x3
)
(
add_SNo
x0
x4
)
)
)
(
SNoCutP
(
binunion
{
add_SNo
x4
x3
|x4 ∈
SNoL
x0
}
(
prim5
(
SNoL
x3
)
(
add_SNo
x0
)
)
)
(
binunion
{
add_SNo
x4
x3
|x4 ∈
SNoR
x0
}
(
prim5
(
SNoR
x3
)
(
add_SNo
x0
)
)
)
)
)
⟶
SNoLev
x2
∈
SNoLev
x1
⟶
x2
∈
SNoS_
(
SNoLev
x1
)
⟶
and
(
and
(
and
(
and
(
and
(
SNo
(
add_SNo
x0
x2
)
)
(
∀ x3 .
x3
∈
SNoL
x0
⟶
SNoLt
(
add_SNo
x3
x2
)
(
add_SNo
x0
x2
)
)
)
(
∀ x3 .
x3
∈
SNoR
x0
⟶
SNoLt
(
add_SNo
x0
x2
)
(
add_SNo
x3
x2
)
)
)
(
∀ x3 .
x3
∈
SNoL
x2
⟶
SNoLt
(
add_SNo
x0
x3
)
(
add_SNo
x0
x2
)
)
)
(
∀ x3 .
x3
∈
SNoR
x2
⟶
SNoLt
(
add_SNo
x0
x2
)
(
add_SNo
x0
x3
)
)
)
(
SNoCutP
(
binunion
{
add_SNo
x3
x2
|x3 ∈
SNoL
x0
}
(
prim5
(
SNoL
x2
)
(
add_SNo
x0
)
)
)
(
binunion
{
add_SNo
x3
x2
|x3 ∈
SNoR
x0
}
(
prim5
(
SNoR
x2
)
(
add_SNo
x0
)
)
)
)
type
prop
theory
HotG
name
-
proof
PUTNo..
Megalodon
Conj_add_SNo_prop1__4__2
proofgold address
TMHM1..
Conj_add_SNo_prop1__4__2
creator
35053
PrNpY..
/
2633f..
owner
35061
PrNpY..
/
429a5..
term root
9bef0..