Search for blocks/addresses/...

Proofgold Proposition

∀ x0 : (ι → ((ι → ι) → ι) → ι)((ι → ι) → ι)ι → ((ι → ι) → ι) → ι . ∀ x1 : ((ι → ι → ι → ι)ι → ι → ι)ι → ι . ∀ x2 : (((((ι → ι) → ι) → ι)ι → ι)(((ι → ι) → ι) → ι) → ι)ι → ι . ∀ x3 : (ι → ι)ι → ι . (∀ x4 : (ι → ι)ι → ι . ∀ x5 : (ι → ι)((ι → ι) → ι)ι → ι → ι . ∀ x6 : ((ι → ι → ι) → ι)(ι → ι)(ι → ι)ι → ι . ∀ x7 : ((ι → ι → ι) → ι) → ι . x3 (λ x9 . 0) (Inj0 (x6 (λ x9 : ι → ι → ι . x1 (λ x10 : ι → ι → ι → ι . λ x11 x12 . 0) (Inj1 0)) (λ x9 . x7 (λ x10 : ι → ι → ι . Inj1 0)) (λ x9 . Inj1 0) 0)) = x4 (λ x9 . x1 (λ x10 : ι → ι → ι → ι . λ x11 x12 . x10 0 0 (setsum (Inj1 0) 0)) (Inj1 0)) (x2 (λ x9 : (((ι → ι) → ι) → ι)ι → ι . λ x10 : ((ι → ι) → ι) → ι . setsum (Inj1 0) (x10 (λ x11 : ι → ι . setsum 0 0))) 0))(∀ x4 : (((ι → ι) → ι)ι → ι)((ι → ι)ι → ι) → ι . ∀ x5 x6 x7 . x3 (λ x9 . x5) x6 = Inj0 (Inj0 (Inj0 x5)))(∀ x4 : ι → ι . ∀ x5 . ∀ x6 : (ι → ι) → ι . ∀ x7 : ι → ι . x2 (λ x9 : (((ι → ι) → ι) → ι)ι → ι . λ x10 : ((ι → ι) → ι) → ι . x6 (λ x11 . x10 (λ x12 : ι → ι . x9 (λ x13 : (ι → ι) → ι . x12 0) 0))) (Inj0 (Inj1 (Inj0 (Inj0 0)))) = x6 (λ x9 . setsum x5 x5))(∀ x4 : ι → ι . ∀ x5 x6 . ∀ x7 : (ι → ι → ι → ι)((ι → ι)ι → ι) → ι . x2 (λ x9 : (((ι → ι) → ι) → ι)ι → ι . λ x10 : ((ι → ι) → ι) → ι . Inj1 (x10 (λ x11 : ι → ι . Inj1 (x11 0)))) (x4 (x4 0)) = x4 (Inj0 (x4 (setsum (setsum 0 0) (x2 (λ x9 : (((ι → ι) → ι) → ι)ι → ι . λ x10 : ((ι → ι) → ι) → ι . 0) 0)))))(∀ x4 : (((ι → ι) → ι)ι → ι) → ι . ∀ x5 x6 . ∀ x7 : ((ι → ι)ι → ι) → ι . x1 (λ x9 : ι → ι → ι → ι . λ x10 x11 . x11) (x1 (λ x9 : ι → ι → ι → ι . λ x10 x11 . x11) (x4 (λ x9 : (ι → ι) → ι . λ x10 . Inj1 (x7 (λ x11 : ι → ι . λ x12 . 0))))) = setsum (Inj0 (x3 (λ x9 . setsum x6 0) (x3 (λ x9 . x7 (λ x10 : ι → ι . λ x11 . 0)) (Inj0 0)))) (Inj0 (x7 (λ x9 : ι → ι . λ x10 . x6))))(∀ x4 x5 x6 x7 . x1 (λ x9 : ι → ι → ι → ι . λ x10 x11 . x3 (λ x12 . 0) (setsum 0 (Inj0 x7))) (x0 (λ x9 . λ x10 : (ι → ι) → ι . x9) (λ x9 : ι → ι . x7) x6 (λ x9 : ι → ι . x9 (x0 (λ x10 . λ x11 : (ι → ι) → ι . x3 (λ x12 . 0) 0) (λ x10 : ι → ι . 0) x6 (λ x10 : ι → ι . x1 (λ x11 : ι → ι → ι → ι . λ x12 x13 . 0) 0)))) = Inj1 (Inj0 0))(∀ x4 : (ι → (ι → ι)ι → ι) → ι . ∀ x5 x6 x7 . x0 (λ x9 . λ x10 : (ι → ι) → ι . 0) (λ x9 : ι → ι . x5) (Inj0 x5) (λ x9 : ι → ι . x2 (λ x10 : (((ι → ι) → ι) → ι)ι → ι . λ x11 : ((ι → ι) → ι) → ι . 0) (Inj0 (Inj1 (x2 (λ x10 : (((ι → ι) → ι) → ι)ι → ι . λ x11 : ((ι → ι) → ι) → ι . 0) 0)))) = Inj1 (x2 (λ x9 : (((ι → ι) → ι) → ι)ι → ι . λ x10 : ((ι → ι) → ι) → ι . 0) x7))(∀ x4 : (((ι → ι)ι → ι) → ι)ι → (ι → ι) → ι . ∀ x5 : ι → ι . ∀ x6 : (ι → (ι → ι)ι → ι) → ι . ∀ x7 . x0 (λ x9 . λ x10 : (ι → ι) → ι . 0) (λ x9 : ι → ι . x0 (λ x10 . λ x11 : (ι → ι) → ι . x0 (λ x12 . λ x13 : (ι → ι) → ι . x0 (λ x14 . λ x15 : (ι → ι) → ι . setsum 0 0) (λ x14 : ι → ι . x0 (λ x15 . λ x16 : (ι → ι) → ι . 0) (λ x15 : ι → ι . 0) 0 (λ x15 : ι → ι . 0)) (setsum 0 0) (λ x14 : ι → ι . Inj0 0)) (λ x12 : ι → ι . setsum (Inj1 0) (x3 (λ x13 . 0) 0)) 0 (λ x12 : ι → ι . setsum (x11 (λ x13 . 0)) (x9 0))) (λ x10 : ι → ι . 0) 0 (λ x10 : ι → ι . 0)) 0 (λ x9 : ι → ι . x2 (λ x10 : (((ι → ι) → ι) → ι)ι → ι . λ x11 : ((ι → ι) → ι) → ι . x2 (λ x12 : (((ι → ι) → ι) → ι)ι → ι . λ x13 : ((ι → ι) → ι) → ι . 0) 0) (x3 (λ x10 . x3 (λ x11 . x10) (Inj1 0)) 0)) = Inj1 0)False
type
prop
theory
HF
name
-
proof
PUSnZ..
Megalodon
-
proofgold address
TMS5X..
creator
11851 PrGVS../00f63..
owner
11889 PrGVS../3ee0e..
term root
f6ee5..