Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr48i..
/
e2780..
PUX6N..
/
f1edc..
vout
Pr48i..
/
5c849..
0.02 bars
TMdwG..
/
dab30..
ownership of
f508c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMN1c..
/
1cd02..
ownership of
40dc2..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMP8T..
/
9bf53..
ownership of
20f8a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNS2..
/
0c295..
ownership of
a2a96..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcxq..
/
66669..
ownership of
7dbfd..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNJ4..
/
66bb1..
ownership of
53183..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZT8..
/
874a6..
ownership of
5b9f3..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMF6F..
/
516a7..
ownership of
e88b0..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXrF..
/
502dc..
ownership of
7613c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJx1..
/
a039f..
ownership of
f3102..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZUz..
/
c698c..
ownership of
63f88..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSYN..
/
96171..
ownership of
2c94f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNYj..
/
b6bae..
ownership of
55ee9..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcr3..
/
05c63..
ownership of
7709f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMb35..
/
c3103..
ownership of
97a48..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMU5W..
/
f55c8..
ownership of
86721..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKob..
/
18545..
ownership of
db4ba..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZYN..
/
4ba88..
ownership of
ba881..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMG4b..
/
78002..
ownership of
90cc8..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPQL..
/
e42b2..
ownership of
51964..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWRx..
/
5b3f0..
ownership of
d6b7d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcoP..
/
c0c44..
ownership of
2b789..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcMu..
/
7250e..
ownership of
b7957..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKdW..
/
7e751..
ownership of
7c3ea..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLhQ..
/
e2804..
ownership of
8c7fa..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMX15..
/
559ee..
ownership of
b581a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGBo..
/
368fe..
ownership of
e70e5..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQ9f..
/
5f94f..
ownership of
2b75c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZCo..
/
41f5f..
ownership of
2f22f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPU9..
/
037b2..
ownership of
4068c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVR1..
/
5b4e1..
ownership of
a0517..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSqZ..
/
b13af..
ownership of
71f8f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcQv..
/
474df..
ownership of
afbec..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKn5..
/
9d15a..
ownership of
909df..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
PUY2k..
/
a31fc..
doc published by
PrGxv..
Param
SNo
SNo
:
ι
→
ο
Param
SNoLe
SNoLe
:
ι
→
ι
→
ο
Param
ordsucc
ordsucc
:
ι
→
ι
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Param
minus_SNo
minus_SNo
:
ι
→
ι
Known
minus_SNo_Le_swap
minus_SNo_Le_swap
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
(
add_SNo
x1
(
minus_SNo
x2
)
)
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
(
minus_SNo
x0
)
Known
SNo_1
SNo_1
:
SNo
1
Theorem
minus_SNo_Le_swap_1
minus_SNo_Le_swap_1
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLe
1
(
add_SNo
x0
(
minus_SNo
x1
)
)
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
(
minus_SNo
1
)
(proof)
Param
SNoLt
SNoLt
:
ι
→
ι
→
ο
Known
minus_SNo_Lt_contra1
minus_SNo_Lt_contra1
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
(
minus_SNo
x0
)
x1
⟶
SNoLt
(
minus_SNo
x1
)
x0
Known
SNo_0
SNo_0
:
SNo
0
Known
minus_SNo_0
minus_SNo_0
:
minus_SNo
0
=
0
Known
SNoLt_0_1
SNoLt_0_1
:
SNoLt
0
1
Theorem
SNoLt_minus_1_0
SNoLt_minus_1_0
:
SNoLt
(
minus_SNo
1
)
0
(proof)
Param
nat_p
nat_p
:
ι
→
ο
Param
ordinal
ordinal
:
ι
→
ο
Known
ordinal_ordsucc_SNo_eq
ordinal_ordsucc_SNo_eq
:
∀ x0 .
ordinal
x0
⟶
ordsucc
x0
=
add_SNo
1
x0
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
add_SNo_minus_L2
add_SNo_minus_L2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
(
minus_SNo
x0
)
(
add_SNo
x0
x1
)
=
x1
Known
nat_p_SNo
nat_p_SNo
:
∀ x0 .
nat_p
x0
⟶
SNo
x0
Theorem
add_minus_1_ordsucc
add_minus_1_ordsucc
:
∀ x0 .
nat_p
x0
⟶
add_SNo
(
minus_SNo
1
)
(
ordsucc
x0
)
=
x0
(proof)
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
SNoLt_irref
SNoLt_irref
:
∀ x0 .
not
(
SNoLt
x0
x0
)
Known
SNoLeLt_tra
SNoLeLt_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x1
⟶
SNoLt
x1
x2
⟶
SNoLt
x0
x2
Known
SNo_add_SNo
SNo_add_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
Known
add_SNo_Le3
add_SNo_Le3
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNoLe
x0
x2
⟶
SNoLe
x1
x3
⟶
SNoLe
(
add_SNo
x0
x1
)
(
add_SNo
x2
x3
)
Known
SNo_minus_SNo
SNo_minus_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
minus_SNo
x0
)
Known
add_SNo_com
add_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
x1
=
add_SNo
x1
x0
Known
add_SNo_com_4_inner_mid
add_SNo_com_4_inner_mid
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
add_SNo
(
add_SNo
x0
x1
)
(
add_SNo
x2
x3
)
=
add_SNo
(
add_SNo
x0
x2
)
(
add_SNo
x1
x3
)
Known
add_SNo_minus_SNo_rinv
add_SNo_minus_SNo_rinv
:
∀ x0 .
SNo
x0
⟶
add_SNo
x0
(
minus_SNo
x0
)
=
0
Known
add_SNo_minus_SNo_linv
add_SNo_minus_SNo_linv
:
∀ x0 .
SNo
x0
⟶
add_SNo
(
minus_SNo
x0
)
x0
=
0
Known
add_SNo_0L
add_SNo_0L
:
∀ x0 .
SNo
x0
⟶
add_SNo
0
x0
=
x0
Theorem
idl_negcycle_2
idl_negcycle_2
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNoLt
(
add_SNo
x2
x3
)
0
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
x2
⟶
SNoLe
(
add_SNo
x0
(
minus_SNo
x1
)
)
x3
⟶
False
(proof)
Known
add_SNo_assoc
add_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
(
add_SNo
x0
x1
)
x2
Known
add_SNo_Le2
add_SNo_Le2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x1
x2
⟶
SNoLe
(
add_SNo
x0
x1
)
(
add_SNo
x0
x2
)
Known
add_SNo_Le1
add_SNo_Le1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x2
⟶
SNoLe
(
add_SNo
x0
x1
)
(
add_SNo
x2
x1
)
Known
add_SNo_com_3b_1_2
add_SNo_com_3b_1_2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
(
add_SNo
x0
x1
)
x2
=
add_SNo
(
add_SNo
x0
x2
)
x1
Known
minus_add_SNo_distr
minus_add_SNo_distr
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
minus_SNo
(
add_SNo
x0
x1
)
=
add_SNo
(
minus_SNo
x0
)
(
minus_SNo
x1
)
Theorem
idl_negcycle_3
idl_negcycle_3
:
∀ x0 x1 x2 x3 x4 x5 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNoLt
(
add_SNo
x3
(
add_SNo
x4
x5
)
)
0
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
x3
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
x4
⟶
SNoLe
(
add_SNo
x0
(
minus_SNo
x2
)
)
x5
⟶
False
(proof)
Known
idl_negcycle_4
idl_negcycle_4
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNoLt
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
x7
)
)
)
0
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
x4
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
x5
⟶
SNoLe
(
add_SNo
x3
(
minus_SNo
x2
)
)
x6
⟶
SNoLe
(
add_SNo
x0
(
minus_SNo
x3
)
)
x7
⟶
False
Theorem
idl_negcycle_5
idl_negcycle_5
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNoLt
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
x9
)
)
)
)
0
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
x5
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
x6
⟶
SNoLe
(
add_SNo
x3
(
minus_SNo
x2
)
)
x7
⟶
SNoLe
(
add_SNo
x4
(
minus_SNo
x3
)
)
x8
⟶
SNoLe
(
add_SNo
x0
(
minus_SNo
x4
)
)
x9
⟶
False
(proof)
Theorem
idl_negcycle_6
idl_negcycle_6
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNoLt
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
x11
)
)
)
)
)
0
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
x6
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
x7
⟶
SNoLe
(
add_SNo
x3
(
minus_SNo
x2
)
)
x8
⟶
SNoLe
(
add_SNo
x4
(
minus_SNo
x3
)
)
x9
⟶
SNoLe
(
add_SNo
x5
(
minus_SNo
x4
)
)
x10
⟶
SNoLe
(
add_SNo
x0
(
minus_SNo
x5
)
)
x11
⟶
False
(proof)
Theorem
idl_negcycle_7
idl_negcycle_7
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNoLt
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
x13
)
)
)
)
)
)
0
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
x7
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
x8
⟶
SNoLe
(
add_SNo
x3
(
minus_SNo
x2
)
)
x9
⟶
SNoLe
(
add_SNo
x4
(
minus_SNo
x3
)
)
x10
⟶
SNoLe
(
add_SNo
x5
(
minus_SNo
x4
)
)
x11
⟶
SNoLe
(
add_SNo
x6
(
minus_SNo
x5
)
)
x12
⟶
SNoLe
(
add_SNo
x0
(
minus_SNo
x6
)
)
x13
⟶
False
(proof)
Theorem
idl_negcycle_8
idl_negcycle_8
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNoLt
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
x15
)
)
)
)
)
)
)
0
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
x8
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
x9
⟶
SNoLe
(
add_SNo
x3
(
minus_SNo
x2
)
)
x10
⟶
SNoLe
(
add_SNo
x4
(
minus_SNo
x3
)
)
x11
⟶
SNoLe
(
add_SNo
x5
(
minus_SNo
x4
)
)
x12
⟶
SNoLe
(
add_SNo
x6
(
minus_SNo
x5
)
)
x13
⟶
SNoLe
(
add_SNo
x7
(
minus_SNo
x6
)
)
x14
⟶
SNoLe
(
add_SNo
x0
(
minus_SNo
x7
)
)
x15
⟶
False
(proof)
Theorem
idl_negcycle_9
idl_negcycle_9
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNoLt
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
x17
)
)
)
)
)
)
)
)
0
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
x9
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
x10
⟶
SNoLe
(
add_SNo
x3
(
minus_SNo
x2
)
)
x11
⟶
SNoLe
(
add_SNo
x4
(
minus_SNo
x3
)
)
x12
⟶
SNoLe
(
add_SNo
x5
(
minus_SNo
x4
)
)
x13
⟶
SNoLe
(
add_SNo
x6
(
minus_SNo
x5
)
)
x14
⟶
SNoLe
(
add_SNo
x7
(
minus_SNo
x6
)
)
x15
⟶
SNoLe
(
add_SNo
x8
(
minus_SNo
x7
)
)
x16
⟶
SNoLe
(
add_SNo
x0
(
minus_SNo
x8
)
)
x17
⟶
False
(proof)
Theorem
idl_negcycle_10
idl_negcycle_10
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNoLt
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
x19
)
)
)
)
)
)
)
)
)
0
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
x10
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
x11
⟶
SNoLe
(
add_SNo
x3
(
minus_SNo
x2
)
)
x12
⟶
SNoLe
(
add_SNo
x4
(
minus_SNo
x3
)
)
x13
⟶
SNoLe
(
add_SNo
x5
(
minus_SNo
x4
)
)
x14
⟶
SNoLe
(
add_SNo
x6
(
minus_SNo
x5
)
)
x15
⟶
SNoLe
(
add_SNo
x7
(
minus_SNo
x6
)
)
x16
⟶
SNoLe
(
add_SNo
x8
(
minus_SNo
x7
)
)
x17
⟶
SNoLe
(
add_SNo
x9
(
minus_SNo
x8
)
)
x18
⟶
SNoLe
(
add_SNo
x0
(
minus_SNo
x9
)
)
x19
⟶
False
(proof)
Theorem
idl_negcycle_11
idl_negcycle_11
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNoLt
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
x21
)
)
)
)
)
)
)
)
)
)
0
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
x11
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
x12
⟶
SNoLe
(
add_SNo
x3
(
minus_SNo
x2
)
)
x13
⟶
SNoLe
(
add_SNo
x4
(
minus_SNo
x3
)
)
x14
⟶
SNoLe
(
add_SNo
x5
(
minus_SNo
x4
)
)
x15
⟶
SNoLe
(
add_SNo
x6
(
minus_SNo
x5
)
)
x16
⟶
SNoLe
(
add_SNo
x7
(
minus_SNo
x6
)
)
x17
⟶
SNoLe
(
add_SNo
x8
(
minus_SNo
x7
)
)
x18
⟶
SNoLe
(
add_SNo
x9
(
minus_SNo
x8
)
)
x19
⟶
SNoLe
(
add_SNo
x10
(
minus_SNo
x9
)
)
x20
⟶
SNoLe
(
add_SNo
x0
(
minus_SNo
x10
)
)
x21
⟶
False
(proof)
Theorem
idl_negcycle_12
idl_negcycle_12
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNoLt
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
x23
)
)
)
)
)
)
)
)
)
)
)
0
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
x12
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
x13
⟶
SNoLe
(
add_SNo
x3
(
minus_SNo
x2
)
)
x14
⟶
SNoLe
(
add_SNo
x4
(
minus_SNo
x3
)
)
x15
⟶
SNoLe
(
add_SNo
x5
(
minus_SNo
x4
)
)
x16
⟶
SNoLe
(
add_SNo
x6
(
minus_SNo
x5
)
)
x17
⟶
SNoLe
(
add_SNo
x7
(
minus_SNo
x6
)
)
x18
⟶
SNoLe
(
add_SNo
x8
(
minus_SNo
x7
)
)
x19
⟶
SNoLe
(
add_SNo
x9
(
minus_SNo
x8
)
)
x20
⟶
SNoLe
(
add_SNo
x10
(
minus_SNo
x9
)
)
x21
⟶
SNoLe
(
add_SNo
x11
(
minus_SNo
x10
)
)
x22
⟶
SNoLe
(
add_SNo
x0
(
minus_SNo
x11
)
)
x23
⟶
False
(proof)
Theorem
idl_negcycle_13
idl_negcycle_13
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNo
x24
⟶
SNo
x25
⟶
SNoLt
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
(
add_SNo
x23
(
add_SNo
x24
x25
)
)
)
)
)
)
)
)
)
)
)
)
0
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
x13
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
x14
⟶
SNoLe
(
add_SNo
x3
(
minus_SNo
x2
)
)
x15
⟶
SNoLe
(
add_SNo
x4
(
minus_SNo
x3
)
)
x16
⟶
SNoLe
(
add_SNo
x5
(
minus_SNo
x4
)
)
x17
⟶
SNoLe
(
add_SNo
x6
(
minus_SNo
x5
)
)
x18
⟶
SNoLe
(
add_SNo
x7
(
minus_SNo
x6
)
)
x19
⟶
SNoLe
(
add_SNo
x8
(
minus_SNo
x7
)
)
x20
⟶
SNoLe
(
add_SNo
x9
(
minus_SNo
x8
)
)
x21
⟶
SNoLe
(
add_SNo
x10
(
minus_SNo
x9
)
)
x22
⟶
SNoLe
(
add_SNo
x11
(
minus_SNo
x10
)
)
x23
⟶
SNoLe
(
add_SNo
x12
(
minus_SNo
x11
)
)
x24
⟶
SNoLe
(
add_SNo
x0
(
minus_SNo
x12
)
)
x25
⟶
False
(proof)
Theorem
idl_negcycle_14
idl_negcycle_14
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNo
x24
⟶
SNo
x25
⟶
SNo
x26
⟶
SNo
x27
⟶
SNoLt
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
(
add_SNo
x23
(
add_SNo
x24
(
add_SNo
x25
(
add_SNo
x26
x27
)
)
)
)
)
)
)
)
)
)
)
)
)
0
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
x14
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
x15
⟶
SNoLe
(
add_SNo
x3
(
minus_SNo
x2
)
)
x16
⟶
SNoLe
(
add_SNo
x4
(
minus_SNo
x3
)
)
x17
⟶
SNoLe
(
add_SNo
x5
(
minus_SNo
x4
)
)
x18
⟶
SNoLe
(
add_SNo
x6
(
minus_SNo
x5
)
)
x19
⟶
SNoLe
(
add_SNo
x7
(
minus_SNo
x6
)
)
x20
⟶
SNoLe
(
add_SNo
x8
(
minus_SNo
x7
)
)
x21
⟶
SNoLe
(
add_SNo
x9
(
minus_SNo
x8
)
)
x22
⟶
SNoLe
(
add_SNo
x10
(
minus_SNo
x9
)
)
x23
⟶
SNoLe
(
add_SNo
x11
(
minus_SNo
x10
)
)
x24
⟶
SNoLe
(
add_SNo
x12
(
minus_SNo
x11
)
)
x25
⟶
SNoLe
(
add_SNo
x13
(
minus_SNo
x12
)
)
x26
⟶
SNoLe
(
add_SNo
x0
(
minus_SNo
x13
)
)
x27
⟶
False
(proof)
Theorem
idl_negcycle_15
idl_negcycle_15
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNo
x24
⟶
SNo
x25
⟶
SNo
x26
⟶
SNo
x27
⟶
SNo
x28
⟶
SNo
x29
⟶
SNoLt
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
(
add_SNo
x23
(
add_SNo
x24
(
add_SNo
x25
(
add_SNo
x26
(
add_SNo
x27
(
add_SNo
x28
x29
)
)
)
)
)
)
)
)
)
)
)
)
)
)
0
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
x15
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
x16
⟶
SNoLe
(
add_SNo
x3
(
minus_SNo
x2
)
)
x17
⟶
SNoLe
(
add_SNo
x4
(
minus_SNo
x3
)
)
x18
⟶
SNoLe
(
add_SNo
x5
(
minus_SNo
x4
)
)
x19
⟶
SNoLe
(
add_SNo
x6
(
minus_SNo
x5
)
)
x20
⟶
SNoLe
(
add_SNo
x7
(
minus_SNo
x6
)
)
x21
⟶
SNoLe
(
add_SNo
x8
(
minus_SNo
x7
)
)
x22
⟶
SNoLe
(
add_SNo
x9
(
minus_SNo
x8
)
)
x23
⟶
SNoLe
(
add_SNo
x10
(
minus_SNo
x9
)
)
x24
⟶
SNoLe
(
add_SNo
x11
(
minus_SNo
x10
)
)
x25
⟶
SNoLe
(
add_SNo
x12
(
minus_SNo
x11
)
)
x26
⟶
SNoLe
(
add_SNo
x13
(
minus_SNo
x12
)
)
x27
⟶
SNoLe
(
add_SNo
x14
(
minus_SNo
x13
)
)
x28
⟶
SNoLe
(
add_SNo
x0
(
minus_SNo
x14
)
)
x29
⟶
False
(proof)
Theorem
idl_negcycle_16
idl_negcycle_16
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 x31 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNo
x24
⟶
SNo
x25
⟶
SNo
x26
⟶
SNo
x27
⟶
SNo
x28
⟶
SNo
x29
⟶
SNo
x30
⟶
SNo
x31
⟶
SNoLt
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
(
add_SNo
x23
(
add_SNo
x24
(
add_SNo
x25
(
add_SNo
x26
(
add_SNo
x27
(
add_SNo
x28
(
add_SNo
x29
(
add_SNo
x30
x31
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
0
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
x16
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
x17
⟶
SNoLe
(
add_SNo
x3
(
minus_SNo
x2
)
)
x18
⟶
SNoLe
(
add_SNo
x4
(
minus_SNo
x3
)
)
x19
⟶
SNoLe
(
add_SNo
x5
(
minus_SNo
x4
)
)
x20
⟶
SNoLe
(
add_SNo
x6
(
minus_SNo
x5
)
)
x21
⟶
SNoLe
(
add_SNo
x7
(
minus_SNo
x6
)
)
x22
⟶
SNoLe
(
add_SNo
x8
(
minus_SNo
x7
)
)
x23
⟶
SNoLe
(
add_SNo
x9
(
minus_SNo
x8
)
)
x24
⟶
SNoLe
(
add_SNo
x10
(
minus_SNo
x9
)
)
x25
⟶
SNoLe
(
add_SNo
x11
(
minus_SNo
x10
)
)
x26
⟶
SNoLe
(
add_SNo
x12
(
minus_SNo
x11
)
)
x27
⟶
SNoLe
(
add_SNo
x13
(
minus_SNo
x12
)
)
x28
⟶
SNoLe
(
add_SNo
x14
(
minus_SNo
x13
)
)
x29
⟶
SNoLe
(
add_SNo
x15
(
minus_SNo
x14
)
)
x30
⟶
SNoLe
(
add_SNo
x0
(
minus_SNo
x15
)
)
x31
⟶
False
(proof)