vout |
---|
PrHkw../ee606.. 24.92 barsTMHRR../af630.. ownership of a6627.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMZj9../50169.. ownership of f0351.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0PUb32../b6afa.. doc published by Pr4zB..Param 4402e.. : ι → (ι → ι → ο) → οParam cf2df.. : ι → (ι → ι → ο) → οDefinition SubqSubq := λ x0 x1 . ∀ x2 . x2 ∈ x0 ⟶ x2 ∈ x1Param setminussetminus : ι → ι → ιParam SingSing : ι → ιDefinition FalseFalse := ∀ x0 : ο . x0Definition notnot := λ x0 : ο . x0 ⟶ FalseDefinition 8b6ad.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 . ∀ x5 : ο . ((x1 = x2 ⟶ ∀ x6 : ο . x6) ⟶ (x1 = x3 ⟶ ∀ x6 : ο . x6) ⟶ (x2 = x3 ⟶ ∀ x6 : ο . x6) ⟶ (x1 = x4 ⟶ ∀ x6 : ο . x6) ⟶ (x2 = x4 ⟶ ∀ x6 : ο . x6) ⟶ (x3 = x4 ⟶ ∀ x6 : ο . x6) ⟶ not (x0 x1 x2) ⟶ not (x0 x1 x3) ⟶ not (x0 x2 x3) ⟶ not (x0 x1 x4) ⟶ not (x0 x2 x4) ⟶ not (x0 x3 x4) ⟶ x5) ⟶ x5Definition c5756.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (8b6ad.. x0 x1 x2 x3 x4 ⟶ (x1 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x2 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x3 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x4 = x5 ⟶ ∀ x7 : ο . x7) ⟶ not (x0 x1 x5) ⟶ not (x0 x2 x5) ⟶ x0 x3 x5 ⟶ x0 x4 x5 ⟶ x6) ⟶ x6Definition 2de86.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (c5756.. x0 x1 x2 x3 x4 x5 ⟶ (x1 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x2 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x3 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x4 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x5 = x6 ⟶ ∀ x8 : ο . x8) ⟶ not (x0 x1 x6) ⟶ x0 x2 x6 ⟶ not (x0 x3 x6) ⟶ x0 x4 x6 ⟶ not (x0 x5 x6) ⟶ x7) ⟶ x7Definition 796c4.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (2de86.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ not (x0 x2 x7) ⟶ x0 x3 x7 ⟶ not (x0 x4 x7) ⟶ not (x0 x5 x7) ⟶ not (x0 x6 x7) ⟶ x8) ⟶ x8Definition f8709.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (c5756.. x0 x1 x2 x3 x4 x5 ⟶ (x1 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x2 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x3 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x4 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x5 = x6 ⟶ ∀ x8 : ο . x8) ⟶ not (x0 x1 x6) ⟶ x0 x2 x6 ⟶ x0 x3 x6 ⟶ x0 x4 x6 ⟶ not (x0 x5 x6) ⟶ x7) ⟶ x7Definition 182cc.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (f8709.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ x0 x2 x7 ⟶ not (x0 x3 x7) ⟶ not (x0 x4 x7) ⟶ not (x0 x5 x7) ⟶ not (x0 x6 x7) ⟶ x8) ⟶ x8Definition 0b76b.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (182cc.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ x0 x1 x8 ⟶ not (x0 x2 x8) ⟶ not (x0 x3 x8) ⟶ not (x0 x4 x8) ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition 3819d.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (2de86.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ x0 x2 x7 ⟶ x0 x3 x7 ⟶ not (x0 x4 x7) ⟶ not (x0 x5 x7) ⟶ not (x0 x6 x7) ⟶ x8) ⟶ x8Definition fd1bb.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (3819d.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ x0 x1 x8 ⟶ not (x0 x2 x8) ⟶ not (x0 x3 x8) ⟶ not (x0 x4 x8) ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition 0c647.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (796c4.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ x0 x2 x8 ⟶ not (x0 x3 x8) ⟶ not (x0 x4 x8) ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition 99ce8.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (796c4.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ x0 x1 x8 ⟶ x0 x2 x8 ⟶ not (x0 x3 x8) ⟶ not (x0 x4 x8) ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition 16c0f.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (f8709.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ x0 x2 x7 ⟶ not (x0 x3 x7) ⟶ x0 x4 x7 ⟶ not (x0 x5 x7) ⟶ not (x0 x6 x7) ⟶ x8) ⟶ x8Definition 3a674.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (16c0f.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ x0 x1 x8 ⟶ not (x0 x2 x8) ⟶ not (x0 x3 x8) ⟶ not (x0 x4 x8) ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition c148f.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (182cc.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ x0 x1 x8 ⟶ not (x0 x2 x8) ⟶ not (x0 x3 x8) ⟶ x0 x4 x8 ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition d7cce.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (796c4.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ not (x0 x2 x8) ⟶ not (x0 x3 x8) ⟶ x0 x4 x8 ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition 79f22.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (796c4.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ not (x0 x2 x8) ⟶ x0 x3 x8 ⟶ x0 x4 x8 ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition 4ce91.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (c5756.. x0 x1 x2 x3 x4 x5 ⟶ (x1 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x2 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x3 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x4 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x5 = x6 ⟶ ∀ x8 : ο . x8) ⟶ x0 x1 x6 ⟶ x0 x2 x6 ⟶ not (x0 x3 x6) ⟶ not (x0 x4 x6) ⟶ not (x0 x5 x6) ⟶ x7) ⟶ x7Definition cb525.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (4ce91.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ x0 x2 x7 ⟶ x0 x3 x7 ⟶ x0 x4 x7 ⟶ not (x0 x5 x7) ⟶ not (x0 x6 x7) ⟶ x8) ⟶ x8Definition d98cb.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (cb525.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ x0 x2 x8 ⟶ not (x0 x3 x8) ⟶ x0 x4 x8 ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition 2f869.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 . ∀ x5 : ο . ((x1 = x2 ⟶ ∀ x6 : ο . x6) ⟶ (x1 = x3 ⟶ ∀ x6 : ο . x6) ⟶ (x2 = x3 ⟶ ∀ x6 : ο . x6) ⟶ (x1 = x4 ⟶ ∀ x6 : ο . x6) ⟶ (x2 = x4 ⟶ ∀ x6 : ο . x6) ⟶ (x3 = x4 ⟶ ∀ x6 : ο . x6) ⟶ not (x0 x1 x2) ⟶ not (x0 x1 x3) ⟶ not (x0 x2 x3) ⟶ not (x0 x1 x4) ⟶ not (x0 x2 x4) ⟶ x0 x3 x4 ⟶ x5) ⟶ x5Definition 87c36.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (2f869.. x0 x1 x2 x3 x4 ⟶ (x1 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x2 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x3 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x4 = x5 ⟶ ∀ x7 : ο . x7) ⟶ not (x0 x1 x5) ⟶ x0 x2 x5 ⟶ not (x0 x3 x5) ⟶ x0 x4 x5 ⟶ x6) ⟶ x6Definition f201d.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (87c36.. x0 x1 x2 x3 x4 x5 ⟶ (x1 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x2 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x3 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x4 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x5 = x6 ⟶ ∀ x8 : ο . x8) ⟶ x0 x1 x6 ⟶ not (x0 x2 x6) ⟶ x0 x3 x6 ⟶ not (x0 x4 x6) ⟶ x0 x5 x6 ⟶ x7) ⟶ x7Definition 81638.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (f201d.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ x0 x2 x7 ⟶ not (x0 x3 x7) ⟶ not (x0 x4 x7) ⟶ not (x0 x5 x7) ⟶ not (x0 x6 x7) ⟶ x8) ⟶ x8Definition 0aba1.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (81638.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ x0 x2 x8 ⟶ not (x0 x3 x8) ⟶ not (x0 x4 x8) ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition e3246.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (81638.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ not (x0 x2 x8) ⟶ not (x0 x3 x8) ⟶ x0 x4 x8 ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition 6648a.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (87c36.. x0 x1 x2 x3 x4 x5 ⟶ (x1 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x2 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x3 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x4 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x5 = x6 ⟶ ∀ x8 : ο . x8) ⟶ not (x0 x1 x6) ⟶ x0 x2 x6 ⟶ x0 x3 x6 ⟶ not (x0 x4 x6) ⟶ not (x0 x5 x6) ⟶ x7) ⟶ x7Definition df271.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (6648a.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ not (x0 x2 x7) ⟶ not (x0 x3 x7) ⟶ not (x0 x4 x7) ⟶ not (x0 x5 x7) ⟶ x0 x6 x7 ⟶ x8) ⟶ x8Definition 279d8.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (df271.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ x0 x1 x8 ⟶ not (x0 x2 x8) ⟶ not (x0 x3 x8) ⟶ not (x0 x4 x8) ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition aa8e6.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (df271.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ x0 x1 x8 ⟶ not (x0 x2 x8) ⟶ x0 x3 x8 ⟶ not (x0 x4 x8) ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition 02262.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (df271.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ not (x0 x2 x8) ⟶ not (x0 x3 x8) ⟶ not (x0 x4 x8) ⟶ x0 x5 x8 ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition 38251.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (87c36.. x0 x1 x2 x3 x4 x5 ⟶ (x1 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x2 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x3 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x4 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x5 = x6 ⟶ ∀ x8 : ο . x8) ⟶ x0 x1 x6 ⟶ not (x0 x2 x6) ⟶ x0 x3 x6 ⟶ not (x0 x4 x6) ⟶ not (x0 x5 x6) ⟶ x7) ⟶ x7Definition e7595.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (38251.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ x0 x2 x7 ⟶ not (x0 x3 x7) ⟶ not (x0 x4 x7) ⟶ not (x0 x5 x7) ⟶ not (x0 x6 x7) ⟶ x8) ⟶ x8Definition 5d19f.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (e7595.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ not (x0 x2 x8) ⟶ not (x0 x3 x8) ⟶ not (x0 x4 x8) ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ x0 x7 x8 ⟶ x9) ⟶ x9Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x1 ⟶ x2) ⟶ x2Definition nInnIn := λ x0 x1 . not (x0 ∈ x1)Known setminusEsetminusE : ∀ x0 x1 x2 . x2 ∈ setminus x0 x1 ⟶ and (x2 ∈ x0) (nIn x2 x1)Known c1d3b.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ x2 x3 x4 ⟶ x2 x4 x3) ⟶ 4402e.. x1 x2 ⟶ cf2df.. x1 x2 ⟶ ∀ x3 . x3 ∈ x1 ⟶ x0 ⊆ setminus x1 (Sing x3) ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ 796c4.. x2 x4 x5 x6 x7 x8 x9 x10 ⟶ ∀ x11 : ο . (x2 x4 x3 ⟶ not (x2 x5 x3) ⟶ not (x2 x6 x3) ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x11) ⟶ (not (x2 x4 x3) ⟶ x2 x5 x3 ⟶ not (x2 x6 x3) ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x11) ⟶ (x2 x4 x3 ⟶ x2 x5 x3 ⟶ not (x2 x6 x3) ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x11) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x11) ⟶ (x2 x4 x3 ⟶ not (x2 x5 x3) ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x11) ⟶ (not (x2 x4 x3) ⟶ x2 x5 x3 ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x11) ⟶ (x2 x4 x3 ⟶ x2 x5 x3 ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x11) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ not (x2 x6 x3) ⟶ x2 x7 x3 ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x11) ⟶ (x2 x4 x3 ⟶ not (x2 x5 x3) ⟶ not (x2 x6 x3) ⟶ x2 x7 x3 ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x11) ⟶ (not (x2 x4 x3) ⟶ x2 x5 x3 ⟶ not (x2 x6 x3) ⟶ x2 x7 x3 ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x11) ⟶ (x2 x4 x3 ⟶ x2 x5 x3 ⟶ not (x2 x6 x3) ⟶ x2 x7 x3 ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x11) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ x2 x6 x3 ⟶ x2 x7 x3 ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x11) ⟶ (x2 x4 x3 ⟶ not (x2 x5 x3) ⟶ x2 x6 x3 ⟶ x2 x7 x3 ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x11) ⟶ (not (x2 x4 x3) ⟶ x2 x5 x3 ⟶ x2 x6 x3 ⟶ x2 x7 x3 ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x11) ⟶ (x2 x4 x3 ⟶ x2 x5 x3 ⟶ x2 x6 x3 ⟶ x2 x7 x3 ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x11) ⟶ (x2 x4 x3 ⟶ not (x2 x5 x3) ⟶ not (x2 x6 x3) ⟶ not (x2 x7 x3) ⟶ x2 x8 x3 ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x11) ⟶ (not (x2 x4 x3) ⟶ x2 x5 x3 ⟶ not (x2 x6 x3) ⟶ not (x2 x7 x3) ⟶ x2 x8 x3 ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x11) ⟶ (x2 x4 x3 ⟶ x2 x5 x3 ⟶ not (x2 x6 x3) ⟶ not (x2 x7 x3) ⟶ x2 x8 x3 ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x11) ⟶ (x2 x4 x3 ⟶ not (x2 x5 x3) ⟶ not (x2 x6 x3) ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ x2 x9 x3 ⟶ not (x2 x10 x3) ⟶ x11) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ x2 x9 x3 ⟶ not (x2 x10 x3) ⟶ x11) ⟶ (x2 x4 x3 ⟶ not (x2 x5 x3) ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ x2 x9 x3 ⟶ not (x2 x10 x3) ⟶ x11) ⟶ (x2 x4 x3 ⟶ not (x2 x5 x3) ⟶ not (x2 x6 x3) ⟶ not (x2 x7 x3) ⟶ x2 x8 x3 ⟶ x2 x9 x3 ⟶ not (x2 x10 x3) ⟶ x11) ⟶ (not (x2 x4 x3) ⟶ x2 x5 x3 ⟶ not (x2 x6 x3) ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ x2 x10 x3 ⟶ x11) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ not (x2 x6 x3) ⟶ x2 x7 x3 ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ x2 x10 x3 ⟶ x11) ⟶ (not (x2 x4 x3) ⟶ x2 x5 x3 ⟶ not (x2 x6 x3) ⟶ x2 x7 x3 ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ x2 x10 x3 ⟶ x11) ⟶ (not (x2 x4 x3) ⟶ x2 x5 x3 ⟶ not (x2 x6 x3) ⟶ not (x2 x7 x3) ⟶ x2 x8 x3 ⟶ not (x2 x9 x3) ⟶ x2 x10 x3 ⟶ x11) ⟶ x11Known af104.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ 796c4.. x1 x2 x3 x4 x5 x6 x7 x8 ⟶ 796c4.. x1 x3 x2 x5 x4 x6 x8 x7Known neq_i_symneq_i_sym : ∀ x0 x1 . (x0 = x1 ⟶ ∀ x2 : ο . x2) ⟶ x1 = x0 ⟶ ∀ x2 : ο . x2Known e7d99.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ 8b6ad.. x1 x2 x3 x4 x5 ⟶ 8b6ad.. x1 x5 x2 x3 x4Known d7596.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ 8b6ad.. x1 x2 x3 x4 x5 ⟶ 8b6ad.. x1 x3 x2 x4 x5Known d257b.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ 8b6ad.. x1 x2 x3 x4 x5 ⟶ 8b6ad.. x1 x3 x4 x2 x5Known Subq_traSubq_tra : ∀ x0 x1 x2 . x0 ⊆ x1 ⟶ x1 ⊆ x2 ⟶ x0 ⊆ x2Known setminus_Subqsetminus_Subq : ∀ x0 x1 . setminus x0 x1 ⊆ x0Known SingISingI : ∀ x0 . x0 ∈ Sing x0Theorem a6627.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ x2 x3 x4 ⟶ x2 x4 x3) ⟶ 4402e.. x1 x2 ⟶ cf2df.. x1 x2 ⟶ ∀ x3 . x3 ∈ x1 ⟶ x0 ⊆ setminus x1 (Sing x3) ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ 796c4.. x2 x4 x5 x6 x7 x8 x9 x10 ⟶ ∀ x11 : ο . (∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ 0b76b.. x2 x12 x13 x14 x3 x15 x16 x17 x18 ⟶ x11) ⟶ (∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ fd1bb.. x2 x12 x13 x3 x14 x15 x16 x17 x18 ⟶ x11) ⟶ (∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ 0c647.. x2 x12 x13 x14 x15 x16 x17 x18 x3 ⟶ x11) ⟶ (∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ 99ce8.. x2 x12 x13 x14 x15 x16 x17 x18 x3 ⟶ x11) ⟶ (∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ 3a674.. x2 x12 x13 x14 x3 x15 x16 x17 x18 ⟶ x11) ⟶ (∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ c148f.. x2 x12 x13 x14 x15 x16 x3 x17 x18 ⟶ x11) ⟶ (∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ d7cce.. x2 x12 x13 x14 x15 x16 x17 x18 x3 ⟶ x11) ⟶ (∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ 79f22.. x2 x12 x13 x14 x15 x16 x17 x18 x3 ⟶ x11) ⟶ (∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ d98cb.. x2 x12 x13 x14 x15 x16 x17 x3 x18 ⟶ x11) ⟶ (∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ 0aba1.. x2 x12 x13 x14 x15 x3 x16 x17 x18 ⟶ x11) ⟶ (∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ e3246.. x2 x12 x13 x14 x15 x3 x16 x17 x18 ⟶ x11) ⟶ (∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ 279d8.. x2 x12 x13 x3 x14 x15 x16 x17 x18 ⟶ x11) ⟶ (∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ aa8e6.. x2 x12 x13 x14 x15 x16 x3 x17 x18 ⟶ x11) ⟶ (∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ 02262.. x2 x12 x3 x13 x14 x15 x16 x17 x18 ⟶ x11) ⟶ (∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ 5d19f.. x2 x12 x3 x13 x14 x15 x16 x17 x18 ⟶ x11) ⟶ x11 (proof) |
|