Search for blocks/addresses/...
Proofgold Proposition
(
∀ x0 .
x0
∈
u17
⟶
Church17_p
(
u17_to_Church17_buggy
x0
)
)
⟶
(
∀ x0 .
x0
∈
u17
⟶
∀ x1 .
x1
∈
u17
⟶
u17_to_Church17_buggy
x0
=
u17_to_Church17_buggy
x1
⟶
x0
=
x1
)
⟶
(
∀ x0 x1 x2 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
x1
⟶
Church17_p
x2
⟶
(
x0
=
x1
⟶
∀ x3 : ο .
x3
)
⟶
(
x0
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
(
TwoRamseyGraph_3_6_Church17
x0
x1
=
λ x4 x5 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x0
x2
=
λ x4 x5 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x1
x2
=
λ x4 x5 .
x4
)
⟶
False
)
⟶
(
∀ x0 x1 .
TwoRamseyGraph_3_6_17_buggy
x0
x1
⟶
TwoRamseyGraph_3_6_17_buggy
x1
x0
)
⟶
(
∀ x0 .
x0
⊆
u17
⟶
atleastp
u6
x0
⟶
not
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
TwoRamseyGraph_3_6_17_buggy
x1
x2
)
)
)
⟶
not
(
TwoRamseyProp_atleastp
3
6
17
)
type
prop
theory
HotG
name
-
proof
PUcZv..
Megalodon
-
proofgold address
TMdYJ..
creator
18990
Pr4zB..
/
8f151..
owner
18990
Pr4zB..
/
8f151..
term root
f9aaf..