Search for blocks/addresses/...

Proofgold Signed Transaction

vin
Pr3AS../2eb01..
PUgae../2791a..
vout
Pr3AS../480cd.. 6.05 bars
TMZ78../7a4a4.. ownership of 49250.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMFii../6166d.. ownership of 10bb4.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMar7../a93dc.. ownership of 0fcaf.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMRSa../634ca.. ownership of 52541.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMdNV../14cb2.. ownership of 4117b.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMJbc../2e1ec.. ownership of 0d894.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMRP1../173f0.. ownership of e7a4d.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMLJW../6b450.. ownership of ee892.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMSPV../7a8b2.. ownership of e3072.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMSTr../75258.. ownership of cc8c3.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMaac../67a4b.. ownership of 134c5.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMLTA../ec820.. ownership of d29bc.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMQTL../27a3b.. ownership of 62440.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMc3j../a9f0c.. ownership of f83b9.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMXGU../d9909.. ownership of e963f.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMXLW../763a6.. ownership of dadf2.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMa2u../a9734.. ownership of 7455c.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMW1c../cff4a.. ownership of 9a3a7.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMcBq../59db5.. ownership of 0cce3.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMd4p../df055.. ownership of be178.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMHiZ../bb74c.. ownership of 6365b.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMVaW../6a5c5.. ownership of 1e5a2.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMaPL../79d5b.. ownership of 23ec6.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMGAy../cad14.. ownership of 420c8.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
PUNGh../2bb6a.. doc published by Pr4zB..
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition 8b6ad.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 . ∀ x5 : ο . ((x1 = x2∀ x6 : ο . x6)(x1 = x3∀ x6 : ο . x6)(x2 = x3∀ x6 : ο . x6)(x1 = x4∀ x6 : ο . x6)(x2 = x4∀ x6 : ο . x6)(x3 = x4∀ x6 : ο . x6)not (x0 x1 x2)not (x0 x1 x3)not (x0 x2 x3)not (x0 x1 x4)not (x0 x2 x4)not (x0 x3 x4)x5)x5
Definition c5756.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (8b6ad.. x0 x1 x2 x3 x4(x1 = x5∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)not (x0 x1 x5)not (x0 x2 x5)x0 x3 x5x0 x4 x5x6)x6
Definition ba720.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (c5756.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)x0 x1 x6x0 x2 x6not (x0 x3 x6)x0 x4 x6not (x0 x5 x6)x7)x7
Known 7cfa7.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0c5756.. x1 x2 x3 x4 x5 x6c5756.. x1 x3 x2 x4 x5 x6
Theorem 23ec6.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0ba720.. x1 x2 x3 x4 x5 x6 x7ba720.. x1 x3 x2 x4 x5 x6 x7 (proof)
Definition f8709.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (c5756.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)not (x0 x1 x6)x0 x2 x6x0 x3 x6x0 x4 x6not (x0 x5 x6)x7)x7
Known c8c81.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0c5756.. x1 x2 x3 x4 x5 x6c5756.. x1 x2 x3 x5 x4 x6
Theorem 6365b.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0f8709.. x1 x2 x3 x4 x5 x6 x7f8709.. x1 x2 x3 x5 x4 x6 x7 (proof)
Definition 62523.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (8b6ad.. x0 x1 x2 x3 x4(x1 = x5∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)not (x0 x1 x5)not (x0 x2 x5)not (x0 x3 x5)x0 x4 x5x6)x6
Definition 659a1.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (62523.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)not (x0 x1 x6)x0 x2 x6x0 x3 x6not (x0 x4 x6)x0 x5 x6x7)x7
Known e6ce7.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x062523.. x1 x2 x3 x4 x5 x662523.. x1 x2 x4 x3 x5 x6
Theorem 0cce3.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0659a1.. x1 x2 x3 x4 x5 x6 x7659a1.. x1 x2 x4 x3 x5 x6 x7 (proof)
Definition 02ade.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (c5756.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)x0 x1 x6x0 x2 x6not (x0 x3 x6)not (x0 x4 x6)x0 x5 x6x7)x7
Known neq_i_symneq_i_sym : ∀ x0 x1 . (x0 = x1∀ x2 : ο . x2)x1 = x0∀ x2 : ο . x2
Theorem 7455c.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x002ade.. x1 x2 x3 x4 x5 x6 x702ade.. x1 x5 x4 x3 x2 x7 x6 (proof)
Param 4402e.. : ι(ιιο) → ο
Param cf2df.. : ι(ιιο) → ο
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param setminussetminus : ιιι
Param SingSing : ιι
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition nInnIn := λ x0 x1 . not (x0x1)
Known setminusEsetminusE : ∀ x0 x1 x2 . x2setminus x0 x1and (x2x0) (nIn x2 x1)
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known FalseEFalseE : False∀ x0 : ο . x0
Known 53a3c.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0not (x1 x2 x3)not (x1 x3 x2))cf2df.. x0 x1∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0(x2 = x3∀ x7 : ο . x7)(x2 = x4∀ x7 : ο . x7)(x3 = x4∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)(x2 = x6∀ x7 : ο . x7)(x3 = x6∀ x7 : ο . x7)(x4 = x6∀ x7 : ο . x7)(x5 = x6∀ x7 : ο . x7)not (x1 x2 x3)not (x1 x2 x4)not (x1 x3 x4)not (x1 x2 x5)not (x1 x3 x5)not (x1 x4 x5)not (x1 x2 x6)not (x1 x3 x6)not (x1 x4 x6)not (x1 x5 x6)False
Known 61345.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)4402e.. x0 x1∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0(x2 = x3∀ x5 : ο . x5)(x2 = x4∀ x5 : ο . x5)(x3 = x4∀ x5 : ο . x5)x1 x2 x3x1 x2 x4x1 x3 x4False
Known Subq_traSubq_tra : ∀ x0 x1 x2 . x0x1x1x2x0x2
Known setminus_Subqsetminus_Subq : ∀ x0 x1 . setminus x0 x1x0
Known SingISingI : ∀ x0 . x0Sing x0
Theorem e963f.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)4402e.. x1 x2cf2df.. x1 x2∀ x3 . x3x1x0setminus x1 (Sing x3)∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0ba720.. x2 x4 x5 x6 x7 x8 x9∀ x10 : ο . (x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)x2 x5 x3not (x2 x6 x3)not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3x2 x5 x3not (x2 x6 x3)not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)not (x2 x5 x3)x2 x6 x3not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3not (x2 x5 x3)x2 x6 x3not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)x2 x5 x3x2 x6 x3not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3x2 x5 x3x2 x6 x3not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)not (x2 x5 x3)not (x2 x6 x3)x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)x2 x5 x3not (x2 x6 x3)x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3x2 x5 x3not (x2 x6 x3)x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)not (x2 x5 x3)x2 x6 x3x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3not (x2 x5 x3)x2 x6 x3x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)x2 x5 x3x2 x6 x3x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3x2 x5 x3x2 x6 x3x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)not (x2 x7 x3)x2 x8 x3not (x2 x9 x3)x10)(not (x2 x4 x3)x2 x5 x3not (x2 x6 x3)not (x2 x7 x3)x2 x8 x3not (x2 x9 x3)x10)(x2 x4 x3x2 x5 x3not (x2 x6 x3)not (x2 x7 x3)x2 x8 x3not (x2 x9 x3)x10)(not (x2 x4 x3)not (x2 x5 x3)x2 x6 x3not (x2 x7 x3)not (x2 x8 x3)x2 x9 x3x10)x10 (proof)
Theorem 62440.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)4402e.. x1 x2cf2df.. x1 x2∀ x3 . x3x1x0setminus x1 (Sing x3)∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0f8709.. x2 x4 x5 x6 x7 x8 x9∀ x10 : ο . (x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)x2 x5 x3not (x2 x6 x3)not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3x2 x5 x3not (x2 x6 x3)not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)not (x2 x5 x3)x2 x6 x3not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3not (x2 x5 x3)x2 x6 x3not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)x2 x5 x3x2 x6 x3not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3x2 x5 x3x2 x6 x3not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)not (x2 x5 x3)not (x2 x6 x3)x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)x2 x5 x3not (x2 x6 x3)x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3x2 x5 x3not (x2 x6 x3)x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)not (x2 x5 x3)x2 x6 x3x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3not (x2 x5 x3)x2 x6 x3x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)x2 x5 x3x2 x6 x3x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3x2 x5 x3x2 x6 x3x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)not (x2 x7 x3)x2 x8 x3not (x2 x9 x3)x10)(not (x2 x4 x3)x2 x5 x3not (x2 x6 x3)not (x2 x7 x3)x2 x8 x3not (x2 x9 x3)x10)(x2 x4 x3x2 x5 x3not (x2 x6 x3)not (x2 x7 x3)x2 x8 x3not (x2 x9 x3)x10)(x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)not (x2 x7 x3)not (x2 x8 x3)x2 x9 x3x10)(x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)not (x2 x7 x3)x2 x8 x3x2 x9 x3x10)x10 (proof)
Theorem 134c5.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)4402e.. x1 x2cf2df.. x1 x2∀ x3 . x3x1x0setminus x1 (Sing x3)∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x002ade.. x2 x4 x5 x6 x7 x8 x9∀ x10 : ο . (x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)x2 x5 x3not (x2 x6 x3)not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3x2 x5 x3not (x2 x6 x3)not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)not (x2 x5 x3)x2 x6 x3not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3not (x2 x5 x3)x2 x6 x3not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)x2 x5 x3x2 x6 x3not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3x2 x5 x3x2 x6 x3not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)not (x2 x5 x3)not (x2 x6 x3)x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)x2 x5 x3not (x2 x6 x3)x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3x2 x5 x3not (x2 x6 x3)x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)not (x2 x5 x3)x2 x6 x3x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3not (x2 x5 x3)x2 x6 x3x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)x2 x5 x3x2 x6 x3x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3x2 x5 x3x2 x6 x3x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)not (x2 x7 x3)x2 x8 x3not (x2 x9 x3)x10)(not (x2 x4 x3)x2 x5 x3not (x2 x6 x3)not (x2 x7 x3)x2 x8 x3not (x2 x9 x3)x10)(x2 x4 x3x2 x5 x3not (x2 x6 x3)not (x2 x7 x3)x2 x8 x3not (x2 x9 x3)x10)(not (x2 x4 x3)not (x2 x5 x3)x2 x6 x3not (x2 x7 x3)not (x2 x8 x3)x2 x9 x3x10)(not (x2 x4 x3)not (x2 x5 x3)not (x2 x6 x3)x2 x7 x3not (x2 x8 x3)x2 x9 x3x10)(not (x2 x4 x3)not (x2 x5 x3)x2 x6 x3x2 x7 x3not (x2 x8 x3)x2 x9 x3x10)x10 (proof)
Theorem e3072.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)4402e.. x1 x2cf2df.. x1 x2∀ x3 . x3x1x0setminus x1 (Sing x3)∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0659a1.. x2 x4 x5 x6 x7 x8 x9∀ x10 : ο . (x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)x2 x5 x3not (x2 x6 x3)not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3x2 x5 x3not (x2 x6 x3)not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)not (x2 x5 x3)x2 x6 x3not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3not (x2 x5 x3)x2 x6 x3not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)x2 x5 x3x2 x6 x3not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3x2 x5 x3x2 x6 x3not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)x2 x5 x3not (x2 x6 x3)x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3x2 x5 x3not (x2 x6 x3)x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)not (x2 x5 x3)x2 x6 x3x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3not (x2 x5 x3)x2 x6 x3x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(not (x2 x4 x3)x2 x5 x3x2 x6 x3x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3x2 x5 x3x2 x6 x3x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)x10)(x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)not (x2 x7 x3)x2 x8 x3not (x2 x9 x3)x10)(not (x2 x4 x3)x2 x5 x3not (x2 x6 x3)not (x2 x7 x3)x2 x8 x3not (x2 x9 x3)x10)(x2 x4 x3x2 x5 x3not (x2 x6 x3)not (x2 x7 x3)x2 x8 x3not (x2 x9 x3)x10)(not (x2 x4 x3)not (x2 x5 x3)x2 x6 x3not (x2 x7 x3)x2 x8 x3not (x2 x9 x3)x10)(x2 x4 x3not (x2 x5 x3)x2 x6 x3not (x2 x7 x3)x2 x8 x3not (x2 x9 x3)x10)(not (x2 x4 x3)x2 x5 x3x2 x6 x3not (x2 x7 x3)x2 x8 x3not (x2 x9 x3)x10)(x2 x4 x3x2 x5 x3x2 x6 x3not (x2 x7 x3)x2 x8 x3not (x2 x9 x3)x10)(x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)not (x2 x7 x3)not (x2 x8 x3)x2 x9 x3x10)(x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)x2 x7 x3not (x2 x8 x3)x2 x9 x3x10)x10 (proof)
Definition 182cc.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (f8709.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7not (x0 x3 x7)not (x0 x4 x7)not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition 2de86.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (c5756.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)not (x0 x1 x6)x0 x2 x6not (x0 x3 x6)x0 x4 x6not (x0 x5 x6)x7)x7
Definition 3819d.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (2de86.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7x0 x3 x7not (x0 x4 x7)not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition 6ca1f.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (ba720.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7x0 x3 x7not (x0 x4 x7)not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition 2b028.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (8b6ad.. x0 x1 x2 x3 x4(x1 = x5∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)not (x0 x1 x5)x0 x2 x5x0 x3 x5x0 x4 x5x6)x6
Definition 9ab39.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (2b028.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)not (x0 x1 x6)x0 x2 x6x0 x3 x6x0 x4 x6not (x0 x5 x6)x7)x7
Definition 2319a.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (9ab39.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7not (x0 x2 x7)not (x0 x3 x7)x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition 16c0f.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (f8709.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7not (x0 x3 x7)x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition 36d58.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (2de86.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7not (x0 x2 x7)x0 x3 x7x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition 28532.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (ba720.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7x0 x3 x7x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition a542b.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (62523.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)not (x0 x1 x6)not (x0 x2 x6)x0 x3 x6not (x0 x4 x6)x0 x5 x6x7)x7
Definition 80533.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (a542b.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7not (x0 x3 x7)x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition a643d.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (659a1.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7not (x0 x2 x7)x0 x3 x7x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition 1d4b1.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (a542b.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7x0 x3 x7x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition fba9e.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (62523.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)not (x0 x1 x6)x0 x2 x6x0 x3 x6not (x0 x4 x6)not (x0 x5 x6)x7)x7
Definition a5b26.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (fba9e.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7not (x0 x2 x7)x0 x3 x7not (x0 x4 x7)x0 x5 x7not (x0 x6 x7)x8)x8
Definition 27260.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (f8709.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7not (x0 x3 x7)not (x0 x4 x7)x0 x5 x7not (x0 x6 x7)x8)x8
Definition 4ea7e.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (c5756.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)not (x0 x1 x6)not (x0 x2 x6)x0 x3 x6x0 x4 x6not (x0 x5 x6)x7)x7
Definition 04ac1.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (4ea7e.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7not (x0 x3 x7)not (x0 x4 x7)not (x0 x5 x7)x0 x6 x7x8)x8
Definition 09fea.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (a542b.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7not (x0 x3 x7)not (x0 x4 x7)not (x0 x5 x7)x0 x6 x7x8)x8
Known 51a01.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x08b6ad.. x1 x2 x3 x4 x58b6ad.. x1 x4 x5 x2 x3
Known 5d146.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0c5756.. x1 x2 x3 x4 x5 x6c5756.. x1 x3 x2 x5 x4 x6
Known d257b.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x08b6ad.. x1 x2 x3 x4 x58b6ad.. x1 x3 x4 x2 x5
Known d7596.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x08b6ad.. x1 x2 x3 x4 x58b6ad.. x1 x3 x2 x4 x5
Known 764ed.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x08b6ad.. x1 x2 x3 x4 x58b6ad.. x1 x3 x4 x5 x2
Theorem e7a4d.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)4402e.. x1 x2cf2df.. x1 x2∀ x3 . x3x1x0setminus x1 (Sing x3)∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0ba720.. x2 x4 x5 x6 x7 x8 x9∀ x10 : ο . (∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0182cc.. x2 x11 x12 x13 x14 x3 x15 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x03819d.. x2 x11 x12 x13 x14 x15 x3 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x06ca1f.. x2 x11 x12 x13 x14 x15 x16 x3x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x02319a.. x2 x11 x12 x13 x14 x15 x3 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x016c0f.. x2 x11 x12 x13 x14 x15 x3 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x036d58.. x2 x11 x12 x13 x14 x3 x15 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x028532.. x2 x11 x12 x13 x14 x15 x16 x3x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x080533.. x2 x11 x12 x3 x13 x14 x15 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0a643d.. x2 x11 x12 x13 x14 x3 x15 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x01d4b1.. x2 x11 x12 x13 x3 x14 x15 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0a5b26.. x2 x11 x12 x13 x3 x14 x15 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x027260.. x2 x11 x12 x13 x14 x3 x15 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x004ac1.. x2 x11 x12 x13 x3 x14 x15 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x009fea.. x2 x11 x12 x3 x13 x14 x15 x16x10)x10 (proof)
Definition 99de9.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (fba9e.. x0 x1 x3 x4 x2 x6 x5(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7not (x0 x2 x7)x0 x3 x7x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition 28e31.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (2de86.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)not (x0 x1 x7)x0 x2 x7x0 x3 x7x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition e8ae3.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (f8709.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7not (x0 x2 x7)x0 x3 x7x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition ae7a6.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (f8709.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)not (x0 x1 x7)x0 x2 x7x0 x3 x7x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition 185eb.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (f8709.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7x0 x3 x7x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition 7c934.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (659a1.. x0 x1 x3 x4 x2 x6 x5(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7not (x0 x2 x7)x0 x3 x7x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition bd1a2.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (659a1.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)not (x0 x1 x7)x0 x2 x7x0 x3 x7x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition d8477.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (4ea7e.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)not (x0 x1 x7)x0 x2 x7not (x0 x3 x7)not (x0 x4 x7)not (x0 x5 x7)x0 x6 x7x8)x8
Definition 948b9.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (fba9e.. x0 x1 x3 x4 x2 x6 x5(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7not (x0 x2 x7)x0 x3 x7x0 x4 x7not (x0 x5 x7)x0 x6 x7x8)x8
Definition f68ad.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (a542b.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)not (x0 x1 x7)x0 x2 x7not (x0 x3 x7)x0 x4 x7not (x0 x5 x7)x0 x6 x7x8)x8
Definition f9bfa.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (659a1.. x0 x1 x3 x4 x2 x6 x5(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7not (x0 x2 x7)x0 x3 x7x0 x4 x7not (x0 x5 x7)x0 x6 x7x8)x8
Definition bb926.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (4ea7e.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)not (x0 x1 x7)x0 x2 x7not (x0 x3 x7)not (x0 x4 x7)x0 x5 x7x0 x6 x7x8)x8
Theorem 4117b.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)4402e.. x1 x2cf2df.. x1 x2∀ x3 . x3x1x0setminus x1 (Sing x3)∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0f8709.. x2 x4 x5 x6 x7 x8 x9∀ x10 : ο . (∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0182cc.. x2 x11 x12 x13 x14 x15 x16 x3x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x099de9.. x2 x11 x12 x13 x14 x15 x3 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x016c0f.. x2 x11 x12 x13 x14 x15 x16 x3x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x036d58.. x2 x11 x12 x13 x14 x15 x3 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x028e31.. x2 x11 x12 x13 x14 x15 x3 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0e8ae3.. x2 x11 x12 x13 x14 x15 x16 x3x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0ae7a6.. x2 x11 x12 x13 x14 x15 x16 x3x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0185eb.. x2 x11 x12 x13 x14 x15 x16 x3x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x07c934.. x2 x11 x12 x13 x14 x15 x3 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0bd1a2.. x2 x11 x12 x13 x14 x3 x15 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x027260.. x2 x11 x12 x13 x14 x15 x16 x3x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0d8477.. x2 x11 x3 x12 x13 x14 x15 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0948b9.. x2 x11 x12 x13 x14 x15 x3 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0f68ad.. x2 x11 x12 x3 x13 x14 x15 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0f9bfa.. x2 x11 x12 x13 x14 x15 x3 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0bb926.. x2 x11 x12 x13 x3 x14 x15 x16x10)x10 (proof)
Definition b0193.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (02ade.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7x0 x3 x7x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition 21422.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (2de86.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7not (x0 x2 x7)x0 x3 x7not (x0 x4 x7)not (x0 x5 x7)x0 x6 x7x8)x8
Definition a53de.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (a542b.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7not (x0 x3 x7)x0 x4 x7not (x0 x5 x7)x0 x6 x7x8)x8
Definition b9d10.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (4ea7e.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7not (x0 x3 x7)not (x0 x4 x7)x0 x5 x7x0 x6 x7x8)x8
Known da9f0.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x08b6ad.. x1 x2 x3 x4 x58b6ad.. x1 x3 x2 x5 x4
Known e7d99.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x08b6ad.. x1 x2 x3 x4 x58b6ad.. x1 x5 x2 x3 x4
Theorem 0fcaf.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)4402e.. x1 x2cf2df.. x1 x2∀ x3 . x3x1x0setminus x1 (Sing x3)∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x002ade.. x2 x4 x5 x6 x7 x8 x9∀ x10 : ο . (∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0b0193.. x2 x11 x12 x13 x14 x15 x16 x3x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x027260.. x2 x11 x12 x13 x14 x15 x3 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x004ac1.. x2 x11 x12 x13 x14 x3 x15 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x021422.. x2 x11 x12 x13 x14 x3 x15 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x009fea.. x2 x11 x12 x13 x3 x14 x15 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0a53de.. x2 x11 x12 x13 x3 x14 x15 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0b9d10.. x2 x11 x12 x13 x14 x15 x3 x16x10)x10 (proof)
Definition 59105.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (a542b.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)not (x0 x1 x7)x0 x2 x7x0 x3 x7x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition 99e5f.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (659a1.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7x0 x3 x7x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition ba9c9.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (659a1.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7not (x0 x2 x7)x0 x3 x7not (x0 x4 x7)x0 x5 x7not (x0 x6 x7)x8)x8
Definition 5e84d.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (62523.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)not (x0 x1 x6)not (x0 x2 x6)x0 x3 x6not (x0 x4 x6)not (x0 x5 x6)x7)x7
Definition 28e61.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (5e84d.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7not (x0 x3 x7)not (x0 x4 x7)not (x0 x5 x7)x0 x6 x7x8)x8
Definition 9733c.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (5e84d.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)not (x0 x1 x7)x0 x2 x7not (x0 x3 x7)not (x0 x4 x7)x0 x5 x7x0 x6 x7x8)x8
Definition b3861.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (5e84d.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7not (x0 x3 x7)not (x0 x4 x7)x0 x5 x7x0 x6 x7x8)x8
Known 1af34.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x062523.. x1 x2 x3 x4 x5 x662523.. x1 x3 x4 x2 x6 x5
Known 412d7.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x062523.. x1 x2 x3 x4 x5 x662523.. x1 x3 x2 x4 x5 x6
Known f957b.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x062523.. x1 x2 x3 x4 x5 x662523.. x1 x2 x4 x3 x6 x5
Known 01a24.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x062523.. x1 x2 x3 x4 x5 x662523.. x1 x2 x3 x4 x6 x5
Known 91090.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x062523.. x1 x2 x3 x4 x5 x662523.. x1 x3 x4 x2 x5 x6
Theorem 49250.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)4402e.. x1 x2cf2df.. x1 x2∀ x3 . x3x1x0setminus x1 (Sing x3)∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0659a1.. x2 x4 x5 x6 x7 x8 x9∀ x10 : ο . (∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x080533.. x2 x11 x12 x13 x14 x15 x3 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x07c934.. x2 x11 x12 x13 x14 x15 x16 x3x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0a643d.. x2 x11 x12 x13 x14 x15 x16 x3x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x059105.. x2 x11 x12 x13 x14 x15 x3 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0bd1a2.. x2 x11 x12 x13 x14 x15 x16 x3x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x099e5f.. x2 x11 x12 x13 x14 x15 x16 x3x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0a5b26.. x2 x11 x12 x13 x14 x15 x3 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0ba9c9.. x2 x11 x12 x13 x14 x15 x16 x3x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x028e61.. x2 x11 x12 x13 x14 x3 x15 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0d8477.. x2 x11 x12 x13 x14 x3 x15 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x009fea.. x2 x11 x12 x13 x14 x3 x15 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0f68ad.. x2 x11 x12 x13 x14 x3 x15 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0a53de.. x2 x11 x12 x13 x14 x15 x3 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0f9bfa.. x2 x11 x12 x13 x14 x15 x16 x3x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x09733c.. x2 x11 x12 x13 x3 x14 x15 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0b3861.. x2 x11 x12 x13 x14 x15 x3 x16x10)(∀ x11 . x11x0∀ x12 . x12x0∀ x13 . x13x0∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0bb926.. x2 x11 x12 x13 x14 x15 x3 x16x10)x10 (proof)