Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrPP6..
/
85ff6..
PUWWX..
/
8552d..
vout
PrPP6..
/
da666..
0.07 bars
TMSrx..
/
116d2..
ownership of
38cac..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKqv..
/
da10e..
ownership of
a6493..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVtX..
/
2c116..
ownership of
eda89..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXLY..
/
f4b09..
ownership of
3c684..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFXU..
/
7b691..
ownership of
51295..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMY4f..
/
f6914..
ownership of
f7c98..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMatA..
/
c8572..
ownership of
8e9bb..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUez..
/
5452d..
ownership of
da4f3..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUB1..
/
02fc7..
ownership of
84397..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGcX..
/
c98e6..
ownership of
e3a62..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMV4q..
/
658ba..
ownership of
9fe90..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSLA..
/
d2332..
ownership of
e7310..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZzE..
/
d19be..
ownership of
babfc..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMS12..
/
54ba4..
ownership of
8b663..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVW1..
/
16417..
ownership of
5dab4..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNKT..
/
9f72b..
ownership of
d7fbc..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUok..
/
1b653..
ownership of
76206..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYEW..
/
eb12c..
ownership of
2e4d9..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TML42..
/
1d74a..
ownership of
18d07..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMViW..
/
5a409..
ownership of
35264..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTLT..
/
8bc7c..
ownership of
45e10..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMM4v..
/
8e4e3..
ownership of
e4b65..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTrm..
/
1ec83..
ownership of
fa6ce..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJy7..
/
26942..
ownership of
116b1..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMP7..
/
e582b..
ownership of
2b614..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdiB..
/
73c64..
ownership of
5cf7e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcHN..
/
735b1..
ownership of
551a1..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPYx..
/
e4112..
ownership of
a7cae..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQRP..
/
c1536..
ownership of
58212..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTCH..
/
5ba47..
ownership of
cce65..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQaw..
/
289f1..
ownership of
0b595..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYZo..
/
f711f..
ownership of
24e4a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMW2C..
/
0b38c..
ownership of
58c5d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYTA..
/
c8845..
ownership of
0d56d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMaPa..
/
db0f7..
ownership of
b6795..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMV8q..
/
3e7be..
ownership of
20f7c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMM8N..
/
674a0..
ownership of
47c39..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTDf..
/
0384b..
ownership of
dff6e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGQp..
/
511a6..
ownership of
368c5..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHfF..
/
ef2fd..
ownership of
d8f46..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSHj..
/
6d064..
ownership of
f9f27..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXGn..
/
ff563..
ownership of
0c40f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRdd..
/
e2476..
ownership of
bf25c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdLx..
/
a9b8d..
ownership of
eb3da..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNfK..
/
f93c4..
ownership of
cbcc4..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMT8W..
/
6a115..
ownership of
f118e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVwD..
/
f9529..
ownership of
9b91e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQiV..
/
2be3f..
ownership of
5cd31..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMab4..
/
0d524..
ownership of
327d7..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMb8o..
/
88b10..
ownership of
4a758..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFgy..
/
eed0b..
ownership of
c5221..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQMc..
/
09cbf..
ownership of
20efa..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZvh..
/
1cd5c..
ownership of
c55f3..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRzT..
/
dea27..
ownership of
77942..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbHt..
/
84c45..
ownership of
ef972..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdNa..
/
52bc3..
ownership of
360da..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHh3..
/
d9999..
ownership of
b5313..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNFa..
/
6ef51..
ownership of
5cbe8..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVrM..
/
450e9..
ownership of
5c481..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMH3p..
/
1f34a..
ownership of
e9028..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHiD..
/
ea373..
ownership of
97325..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWvp..
/
e74ee..
ownership of
3201a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHAc..
/
20027..
ownership of
85a07..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWQt..
/
29be1..
ownership of
ccff4..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXQC..
/
b887a..
ownership of
f3bd7..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TML7p..
/
cde51..
ownership of
443bf..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZr7..
/
1d058..
ownership of
7a21c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRze..
/
f8188..
ownership of
cebf3..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMT6B..
/
05012..
ownership of
fe60b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQTk..
/
018a3..
ownership of
69bea..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYtM..
/
f2c47..
ownership of
cc96f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMic..
/
9a246..
ownership of
f22cf..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSmV..
/
262c7..
ownership of
ba2a1..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFqx..
/
1103c..
ownership of
05217..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMb5i..
/
ccc21..
ownership of
f6ed7..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMY1q..
/
2cea3..
ownership of
ab508..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKFw..
/
01d02..
ownership of
e418b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHEV..
/
482ab..
ownership of
355c2..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGUc..
/
10ada..
ownership of
e46a2..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGWh..
/
41a03..
ownership of
785de..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSns..
/
bb8dc..
ownership of
831d4..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSgm..
/
3268f..
ownership of
50ea7..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVmk..
/
debfb..
ownership of
742c4..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZrB..
/
11211..
ownership of
7a8a0..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGEG..
/
87134..
ownership of
8782d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVBL..
/
42e97..
ownership of
b751a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFqu..
/
ba0de..
ownership of
b71d0..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZqS..
/
67152..
ownership of
299d3..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFZ1..
/
41fd8..
ownership of
fb180..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbof..
/
35bdd..
ownership of
b7caf..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMEii..
/
4402d..
ownership of
df931..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSLm..
/
660c4..
ownership of
f008f..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSef..
/
73a8e..
ownership of
8428d..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLg9..
/
fc135..
ownership of
8a6ab..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPVD..
/
2b016..
ownership of
569d0..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWFK..
/
2fa2d..
ownership of
6f914..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
PUUWv..
/
ae556..
doc published by
PrGxv..
Definition
Subq
:=
λ x0 x1 .
∀ x2 .
prim1
x2
x0
⟶
prim1
x2
x1
Param
1216a..
:
ι
→
(
ι
→
ο
) →
ι
Param
56ded..
:
ι
→
ι
Param
e4431..
:
ι
→
ι
Param
099f3..
:
ι
→
ι
→
ο
Definition
23e07..
:=
λ x0 .
1216a..
(
56ded..
(
e4431..
x0
)
)
(
λ x1 .
099f3..
x1
x0
)
Known
572ea..
:
∀ x0 .
∀ x1 :
ι → ο
.
Subq
(
1216a..
x0
x1
)
x0
Theorem
e1ffe..
:
∀ x0 .
Subq
(
23e07..
x0
)
(
56ded..
(
e4431..
x0
)
)
(proof)
Definition
5246e..
:=
λ x0 .
1216a..
(
56ded..
(
e4431..
x0
)
)
(
099f3..
x0
)
Theorem
f4ff0..
:
∀ x0 .
Subq
(
5246e..
x0
)
(
56ded..
(
e4431..
x0
)
)
(proof)
Param
80242..
:
ι
→
ο
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
bc82c..
:
ι
→
ι
→
ι
Definition
02b90..
:=
λ x0 x1 .
and
(
and
(
∀ x2 .
prim1
x2
x0
⟶
80242..
x2
)
(
∀ x2 .
prim1
x2
x1
⟶
80242..
x2
)
)
(
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x1
⟶
099f3..
x2
x3
)
Param
0ac37..
:
ι
→
ι
→
ι
Param
94f9e..
:
ι
→
(
ι
→
ι
) →
ι
Known
9ec10..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
80242..
x1
⟶
80242..
x2
⟶
(
∀ x3 .
prim1
x3
(
56ded..
(
e4431..
x1
)
)
⟶
x0
x3
x2
)
⟶
(
∀ x3 .
prim1
x3
(
56ded..
(
e4431..
x2
)
)
⟶
x0
x1
x3
)
⟶
(
∀ x3 .
prim1
x3
(
56ded..
(
e4431..
x1
)
)
⟶
∀ x4 .
prim1
x4
(
56ded..
(
e4431..
x2
)
)
⟶
x0
x3
x4
)
⟶
x0
x1
x2
)
⟶
∀ x1 x2 .
80242..
x1
⟶
80242..
x2
⟶
x0
x1
x2
Definition
TransSet
:=
λ x0 .
∀ x1 .
prim1
x1
x0
⟶
Subq
x1
x0
Definition
ordinal
:=
λ x0 .
and
(
TransSet
x0
)
(
∀ x1 .
prim1
x1
x0
⟶
TransSet
x1
)
Param
02a50..
:
ι
→
ι
→
ι
Known
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
8a8cc..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
80242..
x1
⟶
bc82c..
x0
x1
=
02a50..
(
0ac37..
(
94f9e..
(
23e07..
x0
)
(
λ x3 .
bc82c..
x3
x1
)
)
(
94f9e..
(
23e07..
x1
)
(
bc82c..
x0
)
)
)
(
0ac37..
(
94f9e..
(
5246e..
x0
)
(
λ x3 .
bc82c..
x3
x1
)
)
(
94f9e..
(
5246e..
x1
)
(
bc82c..
x0
)
)
)
Known
and5I
:
∀ x0 x1 x2 x3 x4 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
Known
cbec9..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
prim1
x1
(
23e07..
x0
)
⟶
∀ x2 : ο .
(
80242..
x1
⟶
prim1
(
e4431..
x1
)
(
e4431..
x0
)
⟶
099f3..
x1
x0
⟶
x2
)
⟶
x2
Known
0888b..
:
∀ x0 x1 .
02b90..
x0
x1
⟶
∀ x2 .
prim1
x2
x0
⟶
099f3..
x2
(
02a50..
x0
x1
)
Known
da962..
:
∀ x0 x1 x2 .
prim1
x2
x0
⟶
prim1
x2
(
0ac37..
x0
x1
)
Known
696c0..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
prim1
(
x1
x2
)
(
94f9e..
x0
x1
)
Known
e76d1..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
prim1
x1
(
5246e..
x0
)
⟶
∀ x2 : ο .
(
80242..
x1
⟶
prim1
(
e4431..
x1
)
(
e4431..
x0
)
⟶
099f3..
x0
x1
⟶
x2
)
⟶
x2
Known
9c8cc..
:
∀ x0 x1 .
02b90..
x0
x1
⟶
∀ x2 .
prim1
x2
x1
⟶
099f3..
(
02a50..
x0
x1
)
x2
Known
287ca..
:
∀ x0 x1 x2 .
prim1
x2
x1
⟶
prim1
x2
(
0ac37..
x0
x1
)
Known
5a5d4..
:
∀ x0 x1 .
02b90..
x0
x1
⟶
80242..
(
02a50..
x0
x1
)
Known
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Definition
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
edd11..
:
∀ x0 x1 x2 .
prim1
x2
(
0ac37..
x0
x1
)
⟶
or
(
prim1
x2
x0
)
(
prim1
x2
x1
)
Known
8c6f6..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
94f9e..
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
prim1
x4
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Param
d3786..
:
ι
→
ι
→
ι
Param
SNoEq_
:
ι
→
ι
→
ι
→
ο
Definition
False
:=
∀ x0 : ο .
x0
Definition
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
:=
λ x0 x1 .
not
(
prim1
x0
x1
)
Known
36ff9..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
099f3..
x0
x1
⟶
∀ x2 : ο .
(
∀ x3 .
80242..
x3
⟶
prim1
(
e4431..
x3
)
(
d3786..
(
e4431..
x0
)
(
e4431..
x1
)
)
⟶
SNoEq_
(
e4431..
x3
)
x3
x0
⟶
SNoEq_
(
e4431..
x3
)
x3
x1
⟶
099f3..
x0
x3
⟶
099f3..
x3
x1
⟶
nIn
(
e4431..
x3
)
x0
⟶
prim1
(
e4431..
x3
)
x1
⟶
x2
)
⟶
(
prim1
(
e4431..
x0
)
(
e4431..
x1
)
⟶
SNoEq_
(
e4431..
x0
)
x0
x1
⟶
prim1
(
e4431..
x0
)
x1
⟶
x2
)
⟶
(
prim1
(
e4431..
x1
)
(
e4431..
x0
)
⟶
SNoEq_
(
e4431..
x1
)
x0
x1
⟶
nIn
(
e4431..
x1
)
x0
⟶
x2
)
⟶
x2
Known
3eff2..
:
∀ x0 x1 x2 .
prim1
x2
(
d3786..
x0
x1
)
⟶
and
(
prim1
x2
x0
)
(
prim1
x2
x1
)
Known
c7cc7..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
099f3..
x0
x1
⟶
099f3..
x1
x2
⟶
099f3..
x0
x2
Known
18a76..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
80242..
x1
⟶
prim1
(
e4431..
x1
)
(
e4431..
x0
)
⟶
099f3..
x0
x1
⟶
prim1
x1
(
5246e..
x0
)
Known
f5194..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
80242..
x1
⟶
prim1
(
e4431..
x1
)
(
e4431..
x0
)
⟶
099f3..
x1
x0
⟶
prim1
x1
(
23e07..
x0
)
Known
b50ea..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
prim1
(
e4431..
x0
)
(
e4431..
x1
)
⟶
prim1
x0
(
56ded..
(
e4431..
x1
)
)
Known
ordinal_TransSet
:
∀ x0 .
ordinal
x0
⟶
TransSet
x0
Known
4c9ee..
:
∀ x0 .
80242..
x0
⟶
ordinal
(
e4431..
x0
)
Theorem
fb180..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
and
(
and
(
and
(
and
(
and
(
80242..
(
bc82c..
x0
x1
)
)
(
∀ x2 .
prim1
x2
(
23e07..
x0
)
⟶
099f3..
(
bc82c..
x2
x1
)
(
bc82c..
x0
x1
)
)
)
(
∀ x2 .
prim1
x2
(
5246e..
x0
)
⟶
099f3..
(
bc82c..
x0
x1
)
(
bc82c..
x2
x1
)
)
)
(
∀ x2 .
prim1
x2
(
23e07..
x1
)
⟶
099f3..
(
bc82c..
x0
x2
)
(
bc82c..
x0
x1
)
)
)
(
∀ x2 .
prim1
x2
(
5246e..
x1
)
⟶
099f3..
(
bc82c..
x0
x1
)
(
bc82c..
x0
x2
)
)
)
(
02b90..
(
0ac37..
(
94f9e..
(
23e07..
x0
)
(
λ x2 .
bc82c..
x2
x1
)
)
(
94f9e..
(
23e07..
x1
)
(
bc82c..
x0
)
)
)
(
0ac37..
(
94f9e..
(
5246e..
x0
)
(
λ x2 .
bc82c..
x2
x1
)
)
(
94f9e..
(
5246e..
x1
)
(
bc82c..
x0
)
)
)
)
(proof)
Theorem
b71d0..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
80242..
(
bc82c..
x0
x1
)
(proof)
Theorem
8782d..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
099f3..
x0
x2
⟶
099f3..
(
bc82c..
x0
x1
)
(
bc82c..
x2
x1
)
(proof)
Param
fe4bb..
:
ι
→
ι
→
ο
Known
817af..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
fe4bb..
x0
x1
⟶
or
(
099f3..
x0
x1
)
(
x0
=
x1
)
Known
8dc73..
:
∀ x0 x1 .
099f3..
x0
x1
⟶
fe4bb..
x0
x1
Known
4c8cc..
:
∀ x0 .
fe4bb..
x0
x0
Theorem
742c4..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
fe4bb..
x0
x2
⟶
fe4bb..
(
bc82c..
x0
x1
)
(
bc82c..
x2
x1
)
(proof)
Theorem
831d4..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
099f3..
x1
x2
⟶
099f3..
(
bc82c..
x0
x1
)
(
bc82c..
x0
x2
)
(proof)
Theorem
e46a2..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
fe4bb..
x1
x2
⟶
fe4bb..
(
bc82c..
x0
x1
)
(
bc82c..
x0
x2
)
(proof)
Known
c5dec..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
099f3..
x0
x1
⟶
fe4bb..
x1
x2
⟶
099f3..
x0
x2
Theorem
e418b..
:
∀ x0 x1 x2 x3 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
80242..
x3
⟶
099f3..
x0
x2
⟶
fe4bb..
x1
x3
⟶
099f3..
(
bc82c..
x0
x1
)
(
bc82c..
x2
x3
)
(proof)
Known
45d06..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
fe4bb..
x0
x1
⟶
099f3..
x1
x2
⟶
099f3..
x0
x2
Theorem
f6ed7..
:
∀ x0 x1 x2 x3 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
80242..
x3
⟶
fe4bb..
x0
x2
⟶
099f3..
x1
x3
⟶
099f3..
(
bc82c..
x0
x1
)
(
bc82c..
x2
x3
)
(proof)
Theorem
ba2a1..
:
∀ x0 x1 x2 x3 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
80242..
x3
⟶
099f3..
x0
x2
⟶
099f3..
x1
x3
⟶
099f3..
(
bc82c..
x0
x1
)
(
bc82c..
x2
x3
)
(proof)
Known
9787a..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
fe4bb..
x0
x1
⟶
fe4bb..
x1
x2
⟶
fe4bb..
x0
x2
Theorem
cc96f..
:
∀ x0 x1 x2 x3 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
80242..
x3
⟶
fe4bb..
x0
x2
⟶
fe4bb..
x1
x3
⟶
fe4bb..
(
bc82c..
x0
x1
)
(
bc82c..
x2
x3
)
(proof)
Theorem
fe60b..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
02b90..
(
0ac37..
(
94f9e..
(
23e07..
x0
)
(
λ x2 .
bc82c..
x2
x1
)
)
(
94f9e..
(
23e07..
x1
)
(
bc82c..
x0
)
)
)
(
0ac37..
(
94f9e..
(
5246e..
x0
)
(
λ x2 .
bc82c..
x2
x1
)
)
(
94f9e..
(
5246e..
x1
)
(
bc82c..
x0
)
)
)
(proof)
Theorem
7a21c..
:
∀ x0 x1 x2 x3 .
02b90..
x0
x1
⟶
02b90..
x2
x3
⟶
02b90..
(
0ac37..
(
94f9e..
x0
(
λ x4 .
bc82c..
x4
(
02a50..
x2
x3
)
)
)
(
94f9e..
x2
(
bc82c..
(
02a50..
x0
x1
)
)
)
)
(
0ac37..
(
94f9e..
x1
(
λ x4 .
bc82c..
x4
(
02a50..
x2
x3
)
)
)
(
94f9e..
x3
(
bc82c..
(
02a50..
x0
x1
)
)
)
)
(proof)
Known
47e6b..
:
∀ x0 x1 .
0ac37..
x0
x1
=
0ac37..
x1
x0
Known
aff96..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
x1
x3
=
x2
x3
)
⟶
94f9e..
x0
x1
=
94f9e..
x0
x2
Theorem
f3bd7..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
bc82c..
x0
x1
=
bc82c..
x1
x0
(proof)
Param
4a7ef..
:
ι
Known
5ccff..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
80242..
x1
⟶
(
∀ x2 .
prim1
x2
(
56ded..
(
e4431..
x1
)
)
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
80242..
x1
⟶
x0
x1
Known
ebb60..
:
80242..
4a7ef..
Known
f6a2d..
:
∀ x0 .
80242..
x0
⟶
x0
=
02a50..
(
23e07..
x0
)
(
5246e..
x0
)
Known
bf919..
:
5246e..
4a7ef..
=
4a7ef..
Known
d4dbc..
:
∀ x0 :
ι → ι
.
94f9e..
4a7ef..
x0
=
4a7ef..
Known
019ee..
:
∀ x0 .
0ac37..
4a7ef..
x0
=
x0
Known
set_ext
:
∀ x0 x1 .
Subq
x0
x1
⟶
Subq
x1
x0
⟶
x0
=
x1
Known
3e9e2..
:
23e07..
4a7ef..
=
4a7ef..
Theorem
85a07..
:
∀ x0 .
80242..
x0
⟶
bc82c..
4a7ef..
x0
=
x0
(proof)
Theorem
97325..
:
∀ x0 .
80242..
x0
⟶
bc82c..
x0
4a7ef..
=
x0
(proof)
Param
f4dc0..
:
ι
→
ι
Known
2b8be..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
e4431..
x0
=
e4431..
x1
⟶
SNoEq_
(
e4431..
x0
)
x0
x1
⟶
x0
=
x1
Known
aab4f..
:
∀ x0 .
ordinal
x0
⟶
e4431..
x0
=
x0
Known
40f7a..
:
ordinal
4a7ef..
Known
e8942..
:
∀ x0 .
Subq
4a7ef..
x0
Known
c1313..
:
∀ x0 x1 .
02b90..
x0
x1
⟶
∀ x2 .
80242..
x2
⟶
(
∀ x3 .
prim1
x3
x0
⟶
099f3..
x3
x2
)
⟶
(
∀ x3 .
prim1
x3
x1
⟶
099f3..
x2
x3
)
⟶
and
(
Subq
(
e4431..
(
02a50..
x0
x1
)
)
(
e4431..
x2
)
)
(
SNoEq_
(
e4431..
(
02a50..
x0
x1
)
)
(
02a50..
x0
x1
)
x2
)
Known
8948a..
:
∀ x0 .
80242..
x0
⟶
f4dc0..
(
f4dc0..
x0
)
=
x0
Known
4d4af..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
099f3..
x0
x1
⟶
099f3..
(
f4dc0..
x1
)
(
f4dc0..
x0
)
Known
15454..
:
∀ x0 .
80242..
x0
⟶
e4431..
(
f4dc0..
x0
)
=
e4431..
x0
Known
706f7..
:
∀ x0 .
80242..
x0
⟶
80242..
(
f4dc0..
x0
)
Theorem
5c481..
:
∀ x0 .
80242..
x0
⟶
bc82c..
(
f4dc0..
x0
)
x0
=
4a7ef..
(proof)
Theorem
b5313..
:
∀ x0 .
80242..
x0
⟶
bc82c..
x0
(
f4dc0..
x0
)
=
4a7ef..
(proof)
Param
1beb9..
:
ι
→
ι
→
ο
Known
bfaa9..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
prim1
x1
(
56ded..
x0
)
⟶
∀ x2 : ο .
(
prim1
(
e4431..
x1
)
x0
⟶
ordinal
(
e4431..
x1
)
⟶
80242..
x1
⟶
1beb9..
(
e4431..
x1
)
x1
⟶
x2
)
⟶
x2
Known
e3ccf..
:
∀ x0 .
ordinal
x0
⟶
80242..
x0
Known
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
dcd83..
:
∀ x0 .
nIn
x0
4a7ef..
Theorem
ef972..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
ordinal
x1
⟶
02b90..
(
0ac37..
(
94f9e..
(
56ded..
x0
)
(
λ x2 .
bc82c..
x2
x1
)
)
(
94f9e..
(
56ded..
x1
)
(
bc82c..
x0
)
)
)
4a7ef..
(proof)
Known
bc369..
:
∀ x0 .
ordinal
x0
⟶
23e07..
x0
=
56ded..
x0
Known
44ec0..
:
∀ x0 .
ordinal
x0
⟶
5246e..
x0
=
4a7ef..
Theorem
c55f3..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
ordinal
x1
⟶
bc82c..
x0
x1
=
02a50..
(
0ac37..
(
94f9e..
(
56ded..
x0
)
(
λ x3 .
bc82c..
x3
x1
)
)
(
94f9e..
(
56ded..
x1
)
(
bc82c..
x0
)
)
)
4a7ef..
(proof)
Known
32c48..
:
∀ x0 .
80242..
x0
⟶
(
∀ x1 .
prim1
x1
(
56ded..
(
e4431..
x0
)
)
⟶
099f3..
x1
x0
)
⟶
ordinal
x0
Known
41905..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
or
(
or
(
099f3..
x0
x1
)
(
x0
=
x1
)
)
(
099f3..
x1
x0
)
Known
In_irref
:
∀ x0 .
nIn
x0
x0
Param
4ae4a..
:
ι
→
ι
Param
a842e..
:
ι
→
(
ι
→
ι
) →
ι
Known
9b3fd..
:
∀ x0 x1 .
02b90..
x0
x1
⟶
and
(
and
(
and
(
and
(
80242..
(
02a50..
x0
x1
)
)
(
prim1
(
e4431..
(
02a50..
x0
x1
)
)
(
4ae4a..
(
0ac37..
(
a842e..
x0
(
λ x2 .
4ae4a..
(
e4431..
x2
)
)
)
(
a842e..
x1
(
λ x2 .
4ae4a..
(
e4431..
x2
)
)
)
)
)
)
)
(
∀ x2 .
prim1
x2
x0
⟶
099f3..
x2
(
02a50..
x0
x1
)
)
)
(
∀ x2 .
prim1
x2
x1
⟶
099f3..
(
02a50..
x0
x1
)
x2
)
)
(
∀ x2 .
80242..
x2
⟶
(
∀ x3 .
prim1
x3
x0
⟶
099f3..
x3
x2
)
⟶
(
∀ x3 .
prim1
x3
x1
⟶
099f3..
x2
x3
)
⟶
and
(
Subq
(
e4431..
(
02a50..
x0
x1
)
)
(
e4431..
x2
)
)
(
SNoEq_
(
e4431..
(
02a50..
x0
x1
)
)
(
02a50..
x0
x1
)
x2
)
)
Theorem
c5221..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
ordinal
x1
⟶
ordinal
(
bc82c..
x0
x1
)
(proof)
Known
ordinal_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
ordinal
x1
⟶
(
∀ x2 .
prim1
x2
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
ordinal
x1
⟶
x0
x1
Known
4f62a..
:
∀ x0 x1 .
ordinal
x0
⟶
prim1
x1
x0
⟶
or
(
prim1
(
4ae4a..
x1
)
x0
)
(
x0
=
4ae4a..
x1
)
Known
09af0..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
80242..
x1
⟶
prim1
(
e4431..
x1
)
(
4ae4a..
x0
)
⟶
fe4bb..
x1
x0
Known
5faa3..
:
∀ x0 .
prim1
x0
(
4ae4a..
x0
)
Known
f1fea..
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
Subq
x0
x1
⟶
fe4bb..
x0
x1
Known
958ef..
:
∀ x0 x1 .
prim1
x1
(
4ae4a..
x0
)
⟶
or
(
prim1
x1
x0
)
(
x1
=
x0
)
Known
Subq_ref
:
∀ x0 .
Subq
x0
x0
Known
44eea..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
prim1
x1
x0
⟶
099f3..
x1
x0
Known
09068..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
prim1
x1
x0
⟶
prim1
(
4ae4a..
x1
)
(
4ae4a..
x0
)
Known
5f6c1..
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
099f3..
x0
x1
⟶
prim1
x0
x1
Known
b72a3..
:
∀ x0 .
ordinal
x0
⟶
ordinal
(
4ae4a..
x0
)
Known
ade9f..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 x2 .
prim1
x2
x0
⟶
1beb9..
x2
x1
⟶
prim1
x1
(
56ded..
x0
)
Known
5b4d8..
:
∀ x0 .
ordinal
x0
⟶
1beb9..
x0
x0
Theorem
327d7..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
ordinal
x1
⟶
bc82c..
(
4ae4a..
x0
)
x1
=
4ae4a..
(
bc82c..
x0
x1
)
(proof)
Theorem
9b91e..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
ordinal
x1
⟶
bc82c..
x0
(
4ae4a..
x1
)
=
4ae4a..
(
bc82c..
x0
x1
)
(proof)
Known
ordinal_Hered
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
prim1
x1
x0
⟶
ordinal
x1
Theorem
cbcc4..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
ordinal
x1
⟶
∀ x2 .
prim1
x2
x0
⟶
prim1
(
bc82c..
x2
x1
)
(
bc82c..
x0
x1
)
(proof)
Known
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Known
c47c0..
:
∀ x0 .
not
(
099f3..
x0
x0
)
Known
6ec49..
:
∀ x0 x1 x2 x3 .
02b90..
x0
x1
⟶
02b90..
x2
x3
⟶
(
∀ x4 .
prim1
x4
x0
⟶
099f3..
x4
(
02a50..
x2
x3
)
)
⟶
(
∀ x4 .
prim1
x4
x3
⟶
099f3..
(
02a50..
x0
x1
)
x4
)
⟶
fe4bb..
(
02a50..
x0
x1
)
(
02a50..
x2
x3
)
Known
23b01..
:
∀ x0 .
80242..
x0
⟶
02b90..
(
23e07..
x0
)
(
5246e..
x0
)
Known
027ee..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
or
(
099f3..
x0
x1
)
(
fe4bb..
x1
x0
)
Known
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
bba3d..
:
∀ x0 x1 .
prim1
x0
x1
⟶
nIn
x1
x0
Theorem
bf25c..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
∀ x2 .
prim1
x2
(
23e07..
(
bc82c..
x0
x1
)
)
⟶
or
(
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
(
23e07..
x0
)
)
(
fe4bb..
x2
(
bc82c..
x4
x1
)
)
⟶
x3
)
⟶
x3
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
(
23e07..
x1
)
)
(
fe4bb..
x2
(
bc82c..
x0
x4
)
)
⟶
x3
)
⟶
x3
)
(proof)
Theorem
f9f27..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
∀ x2 .
prim1
x2
(
5246e..
(
bc82c..
x0
x1
)
)
⟶
or
(
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
(
5246e..
x0
)
)
(
fe4bb..
(
bc82c..
x4
x1
)
x2
)
⟶
x3
)
⟶
x3
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
(
5246e..
x1
)
)
(
fe4bb..
(
bc82c..
x0
x4
)
x2
)
⟶
x3
)
⟶
x3
)
(proof)
Known
fbd1c..
:
∀ x0 :
ι →
ι →
ι → ο
.
(
∀ x1 x2 x3 .
80242..
x1
⟶
80242..
x2
⟶
80242..
x3
⟶
(
∀ x4 .
prim1
x4
(
56ded..
(
e4431..
x1
)
)
⟶
x0
x4
x2
x3
)
⟶
(
∀ x4 .
prim1
x4
(
56ded..
(
e4431..
x2
)
)
⟶
x0
x1
x4
x3
)
⟶
(
∀ x4 .
prim1
x4
(
56ded..
(
e4431..
x3
)
)
⟶
x0
x1
x2
x4
)
⟶
(
∀ x4 .
prim1
x4
(
56ded..
(
e4431..
x1
)
)
⟶
∀ x5 .
prim1
x5
(
56ded..
(
e4431..
x2
)
)
⟶
x0
x4
x5
x3
)
⟶
(
∀ x4 .
prim1
x4
(
56ded..
(
e4431..
x1
)
)
⟶
∀ x5 .
prim1
x5
(
56ded..
(
e4431..
x3
)
)
⟶
x0
x4
x2
x5
)
⟶
(
∀ x4 .
prim1
x4
(
56ded..
(
e4431..
x2
)
)
⟶
∀ x5 .
prim1
x5
(
56ded..
(
e4431..
x3
)
)
⟶
x0
x1
x4
x5
)
⟶
(
∀ x4 .
prim1
x4
(
56ded..
(
e4431..
x1
)
)
⟶
∀ x5 .
prim1
x5
(
56ded..
(
e4431..
x2
)
)
⟶
∀ x6 .
prim1
x6
(
56ded..
(
e4431..
x3
)
)
⟶
x0
x4
x5
x6
)
⟶
x0
x1
x2
x3
)
⟶
∀ x1 x2 x3 .
80242..
x1
⟶
80242..
x2
⟶
80242..
x3
⟶
x0
x1
x2
x3
Known
22361..
:
∀ x0 x1 x2 x3 .
02b90..
x0
x1
⟶
02b90..
x2
x3
⟶
(
∀ x4 .
prim1
x4
x0
⟶
099f3..
x4
(
02a50..
x2
x3
)
)
⟶
(
∀ x4 .
prim1
x4
x1
⟶
099f3..
(
02a50..
x2
x3
)
x4
)
⟶
(
∀ x4 .
prim1
x4
x2
⟶
099f3..
x4
(
02a50..
x0
x1
)
)
⟶
(
∀ x4 .
prim1
x4
x3
⟶
099f3..
(
02a50..
x0
x1
)
x4
)
⟶
02a50..
x0
x1
=
02a50..
x2
x3
Theorem
368c5..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
bc82c..
x0
(
bc82c..
x1
x2
)
=
bc82c..
(
bc82c..
x0
x1
)
x2
(proof)
Theorem
47c39..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
bc82c..
x0
x1
=
bc82c..
x0
x2
⟶
x1
=
x2
(proof)
Theorem
b6795..
:
f4dc0..
4a7ef..
=
4a7ef..
(proof)
Theorem
58c5d..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
f4dc0..
(
bc82c..
x0
x1
)
=
bc82c..
(
f4dc0..
x0
)
(
f4dc0..
x1
)
(proof)
Param
If_i
:
ο
→
ι
→
ι
→
ι
Param
e6316..
:
ι
→
ι
→
ι
Definition
569d0..
:=
λ x0 x1 .
If_i
(
x1
=
4a7ef..
)
4a7ef..
(
prim0
(
λ x2 .
and
(
80242..
x2
)
(
e6316..
x2
x1
=
x0
)
)
)
Param
236dc..
:
ι
→
ι
→
ι
Param
ce322..
:
ι
→
ι
Param
f6a32..
:
ι
→
ι
Definition
8428d..
:=
λ x0 .
236dc..
(
f4dc0..
(
ce322..
x0
)
)
(
f4dc0..
(
f6a32..
x0
)
)
Param
1013b..
:
ι
→
ο
Known
746bb..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
1013b..
(
236dc..
x0
x1
)
Known
3a25a..
:
∀ x0 .
1013b..
x0
⟶
80242..
(
ce322..
x0
)
Known
43fc2..
:
∀ x0 .
1013b..
x0
⟶
80242..
(
f6a32..
x0
)
Theorem
0b595..
:
∀ x0 .
1013b..
x0
⟶
1013b..
(
8428d..
x0
)
(proof)
Known
a0d36..
:
∀ x0 .
236dc..
x0
4a7ef..
=
x0
Known
55f9f..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
ce322..
(
236dc..
x0
x1
)
=
x0
Theorem
58212..
:
∀ x0 .
80242..
x0
⟶
ce322..
x0
=
x0
(proof)
Known
41b27..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
f6a32..
(
236dc..
x0
x1
)
=
x1
Theorem
551a1..
:
∀ x0 .
80242..
x0
⟶
f6a32..
x0
=
4a7ef..
(proof)
Theorem
2b614..
:
ce322..
4a7ef..
=
4a7ef..
(proof)
Theorem
fa6ce..
:
f6a32..
4a7ef..
=
4a7ef..
(proof)
Known
c8ed0..
:
80242..
(
4ae4a..
4a7ef..
)
Theorem
45e10..
:
ce322..
(
4ae4a..
4a7ef..
)
=
4ae4a..
4a7ef..
(proof)
Theorem
18d07..
:
f6a32..
(
4ae4a..
4a7ef..
)
=
4a7ef..
(proof)
Definition
f8050..
:=
236dc..
4a7ef..
(
4ae4a..
4a7ef..
)
Theorem
76206..
:
ce322..
f8050..
=
4a7ef..
(proof)
Theorem
5dab4..
:
f6a32..
f8050..
=
4ae4a..
4a7ef..
(proof)
Definition
e37c0..
:=
λ x0 x1 .
236dc..
(
bc82c..
(
ce322..
x0
)
(
ce322..
x1
)
)
(
bc82c..
(
f6a32..
x0
)
(
f6a32..
x1
)
)
Theorem
babfc..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
bc82c..
x0
x1
=
e37c0..
x0
x1
(proof)
Theorem
9fe90..
:
∀ x0 x1 .
1013b..
x0
⟶
1013b..
x1
⟶
1013b..
(
e37c0..
x0
x1
)
(proof)
Known
501e2..
:
∀ x0 .
1013b..
x0
⟶
x0
=
236dc..
(
ce322..
x0
)
(
f6a32..
x0
)
Theorem
84397..
:
∀ x0 .
1013b..
x0
⟶
e37c0..
4a7ef..
x0
=
x0
(proof)
Theorem
8e9bb..
:
∀ x0 .
1013b..
x0
⟶
e37c0..
x0
4a7ef..
=
x0
(proof)
Theorem
51295..
:
∀ x0 .
1013b..
x0
⟶
e37c0..
(
8428d..
x0
)
x0
=
4a7ef..
(proof)
Theorem
eda89..
:
∀ x0 .
1013b..
x0
⟶
e37c0..
x0
(
8428d..
x0
)
=
4a7ef..
(proof)
Theorem
38cac..
:
∀ x0 .
80242..
x0
⟶
f4dc0..
x0
=
8428d..
x0
(proof)
Param
7ce1c..
:
ι
→
ι
→
ι
Definition
df931..
:=
λ x0 x1 .
If_i
(
x1
=
4a7ef..
)
4a7ef..
(
prim0
(
λ x2 .
and
(
1013b..
x2
)
(
7ce1c..
x2
x1
=
x0
)
)
)