Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr8bR..
/
34e89..
PUSo6..
/
7f8ba..
vout
Pr8bR..
/
09643..
0.07 bars
TMGCb..
/
9bc11..
ownership of
ed5b9..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMaXQ..
/
82a8e..
ownership of
54bb6..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXKG..
/
4f2e7..
ownership of
ca858..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTzA..
/
b3fe5..
ownership of
f4c47..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXPb..
/
f07dd..
ownership of
4a843..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNou..
/
57477..
ownership of
e1c00..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFZF..
/
27c4c..
ownership of
ad682..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYWr..
/
9fc94..
ownership of
7b7fb..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMEn5..
/
2c206..
ownership of
073b4..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMbY..
/
d4460..
ownership of
aac19..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRnd..
/
f29d8..
ownership of
fa00b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGoA..
/
434c9..
ownership of
9ca49..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKxQ..
/
6f8ca..
ownership of
70f5e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKNB..
/
7baa0..
ownership of
97106..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMH8o..
/
63b33..
ownership of
3350d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTb4..
/
70c34..
ownership of
403e0..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHiB..
/
e041f..
ownership of
1038f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdAi..
/
70cd4..
ownership of
a489d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUDC..
/
32e0e..
ownership of
8b23b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMH6m..
/
137b4..
ownership of
3c675..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHiP..
/
a6cd7..
ownership of
2a18c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZN4..
/
1b83f..
ownership of
bdbe4..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXJM..
/
9fd10..
ownership of
65db8..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcGK..
/
78903..
ownership of
72a10..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTzH..
/
a5974..
ownership of
baee2..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMaPP..
/
51544..
ownership of
87e2f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdYA..
/
d2177..
ownership of
5d9d4..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXM6..
/
4b42f..
ownership of
11672..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMH1J..
/
b54bb..
ownership of
5144e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYAc..
/
656e9..
ownership of
4e34a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZpX..
/
23472..
ownership of
40681..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPo4..
/
f957a..
ownership of
30c79..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQUN..
/
44704..
ownership of
cba25..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSHG..
/
a3001..
ownership of
b2e39..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVCG..
/
17595..
ownership of
1906a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSzi..
/
1c37a..
ownership of
ab3e7..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMEhR..
/
774fe..
ownership of
eb5ba..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdNE..
/
5eace..
ownership of
3341a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMX9d..
/
90973..
ownership of
f24af..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMafy..
/
c09e8..
ownership of
15201..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXyX..
/
8d413..
ownership of
08d14..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGzF..
/
d4b0f..
ownership of
36f11..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFwd..
/
f2571..
ownership of
e7471..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbjN..
/
f4692..
ownership of
2dabd..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLm8..
/
9f6f7..
ownership of
7abb3..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPt9..
/
6f556..
ownership of
4f5a0..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJRc..
/
5ec0f..
ownership of
6f4d6..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMN6y..
/
e7e86..
ownership of
5b79c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSqR..
/
a2a1c..
ownership of
b846f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbyF..
/
aac7b..
ownership of
7c0f0..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
PUbD9..
/
7d134..
doc published by
PrGxv..
Param
ordinal
:
ι
→
ο
Definition
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
ordinal_trichotomy_or
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
or
(
prim1
x0
x1
)
(
x0
=
x1
)
)
(
prim1
x1
x0
)
Theorem
ordinal_trichotomy_or_impred
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 : ο .
(
prim1
x0
x1
⟶
x2
)
⟶
(
x0
=
x1
⟶
x2
)
⟶
(
prim1
x1
x0
⟶
x2
)
⟶
x2
(proof)
Param
80242..
:
ι
→
ο
Param
099f3..
:
ι
→
ι
→
ο
Param
23e07..
:
ι
→
ι
Param
5246e..
:
ι
→
ι
Param
e4431..
:
ι
→
ι
Param
d3786..
:
ι
→
ι
→
ι
Param
SNoEq_
:
ι
→
ι
→
ι
→
ο
Param
nIn
:
ι
→
ι
→
ο
Known
36ff9..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
099f3..
x0
x1
⟶
∀ x2 : ο .
(
∀ x3 .
80242..
x3
⟶
prim1
(
e4431..
x3
)
(
d3786..
(
e4431..
x0
)
(
e4431..
x1
)
)
⟶
SNoEq_
(
e4431..
x3
)
x3
x0
⟶
SNoEq_
(
e4431..
x3
)
x3
x1
⟶
099f3..
x0
x3
⟶
099f3..
x3
x1
⟶
nIn
(
e4431..
x3
)
x0
⟶
prim1
(
e4431..
x3
)
x1
⟶
x2
)
⟶
(
prim1
(
e4431..
x0
)
(
e4431..
x1
)
⟶
SNoEq_
(
e4431..
x0
)
x0
x1
⟶
prim1
(
e4431..
x0
)
x1
⟶
x2
)
⟶
(
prim1
(
e4431..
x1
)
(
e4431..
x0
)
⟶
SNoEq_
(
e4431..
x1
)
x0
x1
⟶
nIn
(
e4431..
x1
)
x0
⟶
x2
)
⟶
x2
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
3eff2..
:
∀ x0 x1 x2 .
prim1
x2
(
d3786..
x0
x1
)
⟶
and
(
prim1
x2
x0
)
(
prim1
x2
x1
)
Known
f5194..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
80242..
x1
⟶
prim1
(
e4431..
x1
)
(
e4431..
x0
)
⟶
099f3..
x1
x0
⟶
prim1
x1
(
23e07..
x0
)
Known
18a76..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
80242..
x1
⟶
prim1
(
e4431..
x1
)
(
e4431..
x0
)
⟶
099f3..
x0
x1
⟶
prim1
x1
(
5246e..
x0
)
Theorem
6f4d6..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
099f3..
x0
x1
⟶
∀ x2 : ο .
(
∀ x3 .
prim1
x3
(
23e07..
x1
)
⟶
prim1
x3
(
5246e..
x0
)
⟶
x2
)
⟶
(
prim1
x0
(
23e07..
x1
)
⟶
x2
)
⟶
(
prim1
x1
(
5246e..
x0
)
⟶
x2
)
⟶
x2
(proof)
Known
bbdbf..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
∀ x2 : ο .
(
099f3..
x0
x1
⟶
x2
)
⟶
(
x0
=
x1
⟶
x2
)
⟶
(
099f3..
x1
x0
⟶
x2
)
⟶
x2
Theorem
7abb3..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
∀ x2 : ο .
(
x0
=
x1
⟶
x2
)
⟶
(
∀ x3 .
prim1
x3
(
23e07..
x1
)
⟶
prim1
x3
(
5246e..
x0
)
⟶
x2
)
⟶
(
prim1
x0
(
23e07..
x1
)
⟶
x2
)
⟶
(
prim1
x1
(
5246e..
x0
)
⟶
x2
)
⟶
(
∀ x3 .
prim1
x3
(
5246e..
x1
)
⟶
prim1
x3
(
23e07..
x0
)
⟶
x2
)
⟶
(
prim1
x0
(
5246e..
x1
)
⟶
x2
)
⟶
(
prim1
x1
(
23e07..
x0
)
⟶
x2
)
⟶
x2
(proof)
Param
bc82c..
:
ι
→
ι
→
ι
Param
f4dc0..
:
ι
→
ι
Known
368c5..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
bc82c..
x0
(
bc82c..
x1
x2
)
=
bc82c..
(
bc82c..
x0
x1
)
x2
Known
706f7..
:
∀ x0 .
80242..
x0
⟶
80242..
(
f4dc0..
x0
)
Param
4a7ef..
:
ι
Known
b5313..
:
∀ x0 .
80242..
x0
⟶
bc82c..
x0
(
f4dc0..
x0
)
=
4a7ef..
Known
97325..
:
∀ x0 .
80242..
x0
⟶
bc82c..
x0
4a7ef..
=
x0
Theorem
e7471..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
bc82c..
(
bc82c..
x0
x1
)
(
f4dc0..
x1
)
=
x0
(proof)
Known
8782d..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
099f3..
x0
x2
⟶
099f3..
(
bc82c..
x0
x1
)
(
bc82c..
x2
x1
)
Known
b71d0..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
80242..
(
bc82c..
x0
x1
)
Theorem
08d14..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
099f3..
(
bc82c..
x0
x1
)
(
bc82c..
x2
x1
)
⟶
099f3..
x0
x2
(proof)
Theorem
f24af..
:
∀ x0 x1 x2 x3 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
80242..
x3
⟶
bc82c..
x0
(
bc82c..
x1
(
bc82c..
x2
x3
)
)
=
bc82c..
(
bc82c..
x0
(
bc82c..
x1
x2
)
)
x3
(proof)
Known
f3bd7..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
bc82c..
x0
x1
=
bc82c..
x1
x0
Theorem
eb5ba..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
bc82c..
x0
(
bc82c..
x1
x2
)
=
bc82c..
x1
(
bc82c..
x0
x2
)
(proof)
Theorem
1906a..
:
∀ x0 x1 x2 x3 .
80242..
x1
⟶
80242..
x2
⟶
80242..
x3
⟶
bc82c..
x0
(
bc82c..
x1
(
bc82c..
x2
x3
)
)
=
bc82c..
x0
(
bc82c..
x2
(
bc82c..
x1
x3
)
)
(proof)
Theorem
cba25..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
bc82c..
(
bc82c..
x0
x1
)
x2
=
bc82c..
(
bc82c..
x0
x2
)
x1
(proof)
Theorem
40681..
:
∀ x0 x1 x2 x3 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
80242..
x3
⟶
bc82c..
(
bc82c..
x0
x1
)
(
bc82c..
x2
x3
)
=
bc82c..
(
bc82c..
x0
x2
)
(
bc82c..
x1
x3
)
(proof)
Theorem
5144e..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
bc82c..
x0
(
bc82c..
x1
x2
)
=
bc82c..
x2
(
bc82c..
x0
x1
)
(proof)
Known
5c481..
:
∀ x0 .
80242..
x0
⟶
bc82c..
(
f4dc0..
x0
)
x0
=
4a7ef..
Known
85a07..
:
∀ x0 .
80242..
x0
⟶
bc82c..
4a7ef..
x0
=
x0
Theorem
5d9d4..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
bc82c..
(
f4dc0..
x0
)
(
bc82c..
x0
x1
)
=
x1
(proof)
Theorem
baee2..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
bc82c..
x0
(
bc82c..
(
f4dc0..
x0
)
x1
)
=
x1
(proof)
Theorem
65db8..
:
∀ x0 x1 x2 x3 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
80242..
x3
⟶
bc82c..
(
bc82c..
x0
(
bc82c..
x1
x2
)
)
(
bc82c..
(
f4dc0..
x2
)
x3
)
=
bc82c..
x0
(
bc82c..
x1
x3
)
(proof)
Theorem
2a18c..
:
∀ x0 x1 x2 x3 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
80242..
x3
⟶
bc82c..
(
bc82c..
x0
(
bc82c..
x1
x2
)
)
(
bc82c..
x3
(
f4dc0..
x2
)
)
=
bc82c..
x0
(
bc82c..
x1
x3
)
(proof)
Known
8948a..
:
∀ x0 .
80242..
x0
⟶
f4dc0..
(
f4dc0..
x0
)
=
x0
Theorem
8b23b..
:
∀ x0 x1 x2 x3 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
80242..
x3
⟶
bc82c..
(
bc82c..
x0
(
bc82c..
x1
(
f4dc0..
x2
)
)
)
(
bc82c..
x2
x3
)
=
bc82c..
x0
(
bc82c..
x1
x3
)
(proof)
Theorem
1038f..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
099f3..
(
bc82c..
x0
(
f4dc0..
x1
)
)
x2
⟶
099f3..
x0
(
bc82c..
x2
x1
)
(proof)
Theorem
3350d..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
099f3..
x2
(
bc82c..
x0
(
f4dc0..
x1
)
)
⟶
099f3..
(
bc82c..
x2
x1
)
x0
(proof)
Known
ba2a1..
:
∀ x0 x1 x2 x3 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
80242..
x3
⟶
099f3..
x0
x2
⟶
099f3..
x1
x3
⟶
099f3..
(
bc82c..
x0
x1
)
(
bc82c..
x2
x3
)
Theorem
70f5e..
:
∀ x0 x1 x2 x3 x4 x5 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
80242..
x3
⟶
80242..
x4
⟶
80242..
x5
⟶
099f3..
(
bc82c..
x0
x4
)
(
bc82c..
x2
x5
)
⟶
099f3..
(
bc82c..
x1
x5
)
(
bc82c..
x3
x4
)
⟶
099f3..
(
bc82c..
x0
x1
)
(
bc82c..
x2
x3
)
(proof)
Known
c7cc7..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
099f3..
x0
x1
⟶
099f3..
x1
x2
⟶
099f3..
x0
x2
Known
831d4..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
099f3..
x1
x2
⟶
099f3..
(
bc82c..
x0
x1
)
(
bc82c..
x0
x2
)
Theorem
fa00b..
:
∀ x0 x1 x2 x3 x4 x5 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
80242..
x3
⟶
80242..
x4
⟶
80242..
x5
⟶
099f3..
(
bc82c..
x0
x2
)
(
bc82c..
x3
x5
)
⟶
099f3..
(
bc82c..
x1
x5
)
x4
⟶
099f3..
(
bc82c..
x0
(
bc82c..
x1
x2
)
)
(
bc82c..
x3
x4
)
(proof)
Known
ebb60..
:
80242..
4a7ef..
Theorem
073b4..
:
∀ x0 x1 x2 x3 x4 x5 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
80242..
x3
⟶
80242..
x4
⟶
80242..
x5
⟶
099f3..
(
bc82c..
x0
x5
)
(
bc82c..
x2
x4
)
⟶
099f3..
x1
(
bc82c..
x5
x3
)
⟶
099f3..
(
bc82c..
x0
x1
)
(
bc82c..
x2
(
bc82c..
x3
x4
)
)
(proof)
Theorem
ad682..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
80242..
x3
⟶
80242..
x4
⟶
80242..
x5
⟶
80242..
x6
⟶
80242..
x7
⟶
099f3..
(
bc82c..
x0
x5
)
(
bc82c..
x6
x7
)
⟶
099f3..
(
bc82c..
x1
x7
)
x4
⟶
099f3..
(
bc82c..
x6
x2
)
(
bc82c..
x3
x5
)
⟶
099f3..
(
bc82c..
x0
(
bc82c..
x1
x2
)
)
(
bc82c..
x3
x4
)
(proof)
Theorem
4a843..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
80242..
x3
⟶
80242..
x4
⟶
80242..
x5
⟶
80242..
x6
⟶
80242..
x7
⟶
099f3..
(
bc82c..
x0
x5
)
(
bc82c..
x6
x4
)
⟶
099f3..
x1
(
bc82c..
x7
x3
)
⟶
099f3..
(
bc82c..
x6
x7
)
(
bc82c..
x2
x5
)
⟶
099f3..
(
bc82c..
x0
x1
)
(
bc82c..
x2
(
bc82c..
x3
x4
)
)
(proof)
Param
e6316..
:
ι
→
ι
→
ι
Param
02a50..
:
ι
→
ι
→
ι
Param
0ac37..
:
ι
→
ι
→
ι
Param
94f9e..
:
ι
→
(
ι
→
ι
) →
ι
Param
0fc90..
:
ι
→
(
ι
→
ι
) →
ι
Definition
ac767..
:=
λ x0 x1 .
0fc90..
x0
(
λ x2 .
x1
)
Param
f482f..
:
ι
→
ι
→
ι
Param
4ae4a..
:
ι
→
ι
Known
edd11..
:
∀ x0 x1 x2 .
prim1
x2
(
0ac37..
x0
x1
)
⟶
or
(
prim1
x2
x0
)
(
prim1
x2
x1
)
Known
8c6f6..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
94f9e..
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
prim1
x4
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Known
33e74..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
0fc90..
x0
x1
)
⟶
prim1
(
f482f..
x2
4a7ef..
)
x0
Known
35b50..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
0fc90..
x0
x1
)
⟶
prim1
(
f482f..
x2
(
4ae4a..
4a7ef..
)
)
(
x1
(
f482f..
x2
4a7ef..
)
)
Known
da962..
:
∀ x0 x1 x2 .
prim1
x2
x0
⟶
prim1
x2
(
0ac37..
x0
x1
)
Param
If_i
:
ο
→
ι
→
ι
→
ι
Known
6f2e8..
:
∀ x0 x1 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
x1
)
)
4a7ef..
=
x0
Known
15d37..
:
∀ x0 x1 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
x1
)
)
(
4ae4a..
4a7ef..
)
=
x1
Known
696c0..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
prim1
(
x1
x2
)
(
94f9e..
x0
x1
)
Known
d5115..
:
∀ x0 x1 x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x1
⟶
prim1
(
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x2
x3
)
)
(
ac767..
x0
x1
)
Known
287ca..
:
∀ x0 x1 x2 .
prim1
x2
x1
⟶
prim1
x2
(
0ac37..
x0
x1
)
Known
6381b..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
80242..
x1
⟶
e6316..
x0
x1
=
02a50..
(
0ac37..
(
94f9e..
(
ac767..
(
23e07..
x0
)
(
23e07..
x1
)
)
(
λ x3 .
bc82c..
(
e6316..
(
f482f..
x3
4a7ef..
)
x1
)
(
bc82c..
(
e6316..
x0
(
f482f..
x3
(
4ae4a..
4a7ef..
)
)
)
(
f4dc0..
(
e6316..
(
f482f..
x3
4a7ef..
)
(
f482f..
x3
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
(
94f9e..
(
ac767..
(
5246e..
x0
)
(
5246e..
x1
)
)
(
λ x3 .
bc82c..
(
e6316..
(
f482f..
x3
4a7ef..
)
x1
)
(
bc82c..
(
e6316..
x0
(
f482f..
x3
(
4ae4a..
4a7ef..
)
)
)
(
f4dc0..
(
e6316..
(
f482f..
x3
4a7ef..
)
(
f482f..
x3
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
(
0ac37..
(
94f9e..
(
ac767..
(
23e07..
x0
)
(
5246e..
x1
)
)
(
λ x3 .
bc82c..
(
e6316..
(
f482f..
x3
4a7ef..
)
x1
)
(
bc82c..
(
e6316..
x0
(
f482f..
x3
(
4ae4a..
4a7ef..
)
)
)
(
f4dc0..
(
e6316..
(
f482f..
x3
4a7ef..
)
(
f482f..
x3
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
(
94f9e..
(
ac767..
(
5246e..
x0
)
(
23e07..
x1
)
)
(
λ x3 .
bc82c..
(
e6316..
(
f482f..
x3
4a7ef..
)
x1
)
(
bc82c..
(
e6316..
x0
(
f482f..
x3
(
4ae4a..
4a7ef..
)
)
)
(
f4dc0..
(
e6316..
(
f482f..
x3
4a7ef..
)
(
f482f..
x3
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
Theorem
ca858..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
∀ x2 : ο .
(
∀ x3 x4 .
(
∀ x5 .
prim1
x5
x3
⟶
∀ x6 : ο .
(
∀ x7 .
prim1
x7
(
23e07..
x0
)
⟶
∀ x8 .
prim1
x8
(
23e07..
x1
)
⟶
x5
=
bc82c..
(
e6316..
x7
x1
)
(
bc82c..
(
e6316..
x0
x8
)
(
f4dc0..
(
e6316..
x7
x8
)
)
)
⟶
x6
)
⟶
(
∀ x7 .
prim1
x7
(
5246e..
x0
)
⟶
∀ x8 .
prim1
x8
(
5246e..
x1
)
⟶
x5
=
bc82c..
(
e6316..
x7
x1
)
(
bc82c..
(
e6316..
x0
x8
)
(
f4dc0..
(
e6316..
x7
x8
)
)
)
⟶
x6
)
⟶
x6
)
⟶
(
∀ x5 .
prim1
x5
(
23e07..
x0
)
⟶
∀ x6 .
prim1
x6
(
23e07..
x1
)
⟶
prim1
(
bc82c..
(
e6316..
x5
x1
)
(
bc82c..
(
e6316..
x0
x6
)
(
f4dc0..
(
e6316..
x5
x6
)
)
)
)
x3
)
⟶
(
∀ x5 .
prim1
x5
(
5246e..
x0
)
⟶
∀ x6 .
prim1
x6
(
5246e..
x1
)
⟶
prim1
(
bc82c..
(
e6316..
x5
x1
)
(
bc82c..
(
e6316..
x0
x6
)
(
f4dc0..
(
e6316..
x5
x6
)
)
)
)
x3
)
⟶
(
∀ x5 .
prim1
x5
x4
⟶
∀ x6 : ο .
(
∀ x7 .
prim1
x7
(
23e07..
x0
)
⟶
∀ x8 .
prim1
x8
(
5246e..
x1
)
⟶
x5
=
bc82c..
(
e6316..
x7
x1
)
(
bc82c..
(
e6316..
x0
x8
)
(
f4dc0..
(
e6316..
x7
x8
)
)
)
⟶
x6
)
⟶
(
∀ x7 .
prim1
x7
(
5246e..
x0
)
⟶
∀ x8 .
prim1
x8
(
23e07..
x1
)
⟶
x5
=
bc82c..
(
e6316..
x7
x1
)
(
bc82c..
(
e6316..
x0
x8
)
(
f4dc0..
(
e6316..
x7
x8
)
)
)
⟶
x6
)
⟶
x6
)
⟶
(
∀ x5 .
prim1
x5
(
23e07..
x0
)
⟶
∀ x6 .
prim1
x6
(
5246e..
x1
)
⟶
prim1
(
bc82c..
(
e6316..
x5
x1
)
(
bc82c..
(
e6316..
x0
x6
)
(
f4dc0..
(
e6316..
x5
x6
)
)
)
)
x4
)
⟶
(
∀ x5 .
prim1
x5
(
5246e..
x0
)
⟶
∀ x6 .
prim1
x6
(
23e07..
x1
)
⟶
prim1
(
bc82c..
(
e6316..
x5
x1
)
(
bc82c..
(
e6316..
x0
x6
)
(
f4dc0..
(
e6316..
x5
x6
)
)
)
)
x4
)
⟶
e6316..
x0
x1
=
02a50..
x3
x4
⟶
x2
)
⟶
x2
(proof)
Param
56ded..
:
ι
→
ι
Known
5ccff..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
80242..
x1
⟶
(
∀ x2 .
prim1
x2
(
56ded..
(
e4431..
x1
)
)
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
80242..
x1
⟶
x0
x1
Definition
02b90..
:=
λ x0 x1 .
and
(
and
(
∀ x2 .
prim1
x2
x0
⟶
80242..
x2
)
(
∀ x2 .
prim1
x2
x1
⟶
80242..
x2
)
)
(
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x1
⟶
099f3..
x2
x3
)
Known
cbec9..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
prim1
x1
(
23e07..
x0
)
⟶
∀ x2 : ο .
(
80242..
x1
⟶
prim1
(
e4431..
x1
)
(
e4431..
x0
)
⟶
099f3..
x1
x0
⟶
x2
)
⟶
x2
Known
0888b..
:
∀ x0 x1 .
02b90..
x0
x1
⟶
∀ x2 .
prim1
x2
x0
⟶
099f3..
x2
(
02a50..
x0
x1
)
Known
e76d1..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
prim1
x1
(
5246e..
x0
)
⟶
∀ x2 : ο .
(
80242..
x1
⟶
prim1
(
e4431..
x1
)
(
e4431..
x0
)
⟶
099f3..
x0
x1
⟶
x2
)
⟶
x2
Known
9c8cc..
:
∀ x0 x1 .
02b90..
x0
x1
⟶
∀ x2 .
prim1
x2
x1
⟶
099f3..
(
02a50..
x0
x1
)
x2
Known
5a5d4..
:
∀ x0 x1 .
02b90..
x0
x1
⟶
80242..
(
02a50..
x0
x1
)
Known
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
63df9..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
prim1
x1
(
23e07..
x0
)
⟶
prim1
x1
(
56ded..
(
e4431..
x0
)
)
Known
54843..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
prim1
x1
(
5246e..
x0
)
⟶
prim1
x1
(
56ded..
(
e4431..
x0
)
)
Definition
Subq
:=
λ x0 x1 .
∀ x2 .
prim1
x2
x0
⟶
prim1
x2
x1
Definition
TransSet
:=
λ x0 .
∀ x1 .
prim1
x1
x0
⟶
Subq
x1
x0
Known
ordinal_TransSet
:
∀ x0 .
ordinal
x0
⟶
TransSet
x0
Known
4c9ee..
:
∀ x0 .
80242..
x0
⟶
ordinal
(
e4431..
x0
)
Known
b50ea..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
prim1
(
e4431..
x0
)
(
e4431..
x1
)
⟶
prim1
x0
(
56ded..
(
e4431..
x1
)
)
Param
1beb9..
:
ι
→
ι
→
ο
Known
bfaa9..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
prim1
x1
(
56ded..
x0
)
⟶
∀ x2 : ο .
(
prim1
(
e4431..
x1
)
x0
⟶
ordinal
(
e4431..
x1
)
⟶
80242..
x1
⟶
1beb9..
(
e4431..
x1
)
x1
⟶
x2
)
⟶
x2
Theorem
ed5b9..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
80242..
x1
⟶
∀ x2 : ο .
(
80242..
(
e6316..
x0
x1
)
⟶
(
∀ x3 .
prim1
x3
(
23e07..
x0
)
⟶
∀ x4 .
prim1
x4
(
23e07..
x1
)
⟶
099f3..
(
bc82c..
(
e6316..
x3
x1
)
(
e6316..
x0
x4
)
)
(
bc82c..
(
e6316..
x0
x1
)
(
e6316..
x3
x4
)
)
)
⟶
(
∀ x3 .
prim1
x3
(
5246e..
x0
)
⟶
∀ x4 .
prim1
x4
(
5246e..
x1
)
⟶
099f3..
(
bc82c..
(
e6316..
x3
x1
)
(
e6316..
x0
x4
)
)
(
bc82c..
(
e6316..
x0
x1
)
(
e6316..
x3
x4
)
)
)
⟶
(
∀ x3 .
prim1
x3
(
23e07..
x0
)
⟶
∀ x4 .
prim1
x4
(
5246e..
x1
)
⟶
099f3..
(
bc82c..
(
e6316..
x0
x1
)
(
e6316..
x3
x4
)
)
(
bc82c..
(
e6316..
x3
x1
)
(
e6316..
x0
x4
)
)
)
⟶
(
∀ x3 .
prim1
x3
(
5246e..
x0
)
⟶
∀ x4 .
prim1
x4
(
23e07..
x1
)
⟶
099f3..
(
bc82c..
(
e6316..
x0
x1
)
(
e6316..
x3
x4
)
)
(
bc82c..
(
e6316..
x3
x1
)
(
e6316..
x0
x4
)
)
)
⟶
x2
)
⟶
x2
(proof)