∀ x0 x1 x2 : ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . ∀ x3 x4 x5 : ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . ChurchNum_3ary_proj_p x0 ⟶ ChurchNum_3ary_proj_p x1 ⟶ ChurchNum_3ary_proj_p x2 ⟶ ChurchNum_8ary_proj_p x3 ⟶ ChurchNum_8ary_proj_p x4 ⟶ ChurchNum_8ary_proj_p x5 ⟶ (TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x7 x8 x9 : (ι → ι) → ι → ι . x7) (λ x7 x8 x9 x10 x11 x12 x13 x14 : (ι → ι) → ι → ι . x7) x0 x3 = λ x7 x8 . x8) ⟶ (TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x7 x8 x9 : (ι → ι) → ι → ι . x7) (λ x7 x8 x9 x10 x11 x12 x13 x14 : (ι → ι) → ι → ι . x7) x1 x4 = λ x7 x8 . x8) ⟶ (TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x7 x8 x9 : (ι → ι) → ι → ι . x7) (λ x7 x8 x9 x10 x11 x12 x13 x14 : (ι → ι) → ι → ι . x7) x2 x5 = λ x7 x8 . x8) ⟶ (TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x7 x8 x9 : (ι → ι) → ι → ι . x7) (λ x7 x8 x9 x10 x11 x12 x13 x14 : (ι → ι) → ι → ι . x10) x0 x3 = λ x7 x8 . x8) ⟶ (TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x7 x8 x9 : (ι → ι) → ι → ι . x7) (λ x7 x8 x9 x10 x11 x12 x13 x14 : (ι → ι) → ι → ι . x10) x1 x4 = λ x7 x8 . x8) ⟶ (TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x7 x8 x9 : (ι → ι) → ι → ι . x7) (λ x7 x8 x9 x10 x11 x12 x13 x14 : (ι → ι) → ι → ι . x10) x2 x5 = λ x7 x8 . x8) ⟶ (TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x3 x1 x4 = λ x7 x8 . x8) ⟶ (TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x3 x2 x5 = λ x7 x8 . x8) ⟶ (TwoRamseyGraph_4_5_24_ChurchNums_3x8 x1 x4 x2 x5 = λ x7 x8 . x8) ⟶ ∀ x6 : ο . ((x0 = λ x8 x9 x10 : (ι → ι) → ι → ι . x9) ⟶ (x3 = λ x8 x9 x10 x11 x12 x13 x14 x15 : (ι → ι) → ι → ι . x10) ⟶ x6) ⟶ ((x0 = λ x8 x9 x10 : (ι → ι) → ι → ι . x9) ⟶ (x3 = λ x8 x9 x10 x11 x12 x13 x14 x15 : (ι → ι) → ι → ι . x13) ⟶ x6) ⟶ ((x0 = λ x8 x9 x10 : (ι → ι) → ι → ι . x9) ⟶ (x3 = λ x8 x9 x10 x11 x12 x13 x14 x15 : (ι → ι) → ι → ι . x14) ⟶ x6) ⟶ ((x0 = λ x8 x9 x10 : (ι → ι) → ι → ι . x10) ⟶ (x3 = λ x8 x9 x10 x11 x12 x13 x14 x15 : (ι → ι) → ι → ι . x9) ⟶ x6) ⟶ ((x0 = λ x8 x9 x10 : (ι → ι) → ι → ι . x10) ⟶ (x3 = λ x8 x9 x10 x11 x12 x13 x14 x15 : (ι → ι) → ι → ι . x13) ⟶ x6) ⟶ x6 |
|