Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrNHZ..
/
7c645..
PUfjS..
/
fe06a..
vout
PrNHZ..
/
2723b..
63.94 bars
TMUwe..
/
c7154..
negprop ownership controlledby
PrQUS..
upto 0
TMFbb..
/
b0df6..
negprop ownership controlledby
PrQUS..
upto 0
TMF7m..
/
8f590..
ownership of
5a8d6..
as prop with payaddr
PrQUS..
rightscost 0.00 controlledby
PrQUS..
upto 0
TMJEj..
/
a6c1c..
ownership of
bea95..
as prop with payaddr
PrQUS..
rightscost 0.00 controlledby
PrQUS..
upto 0
TMPDh..
/
70285..
ownership of
e8cda..
as prop with payaddr
PrQUS..
rightscost 0.00 controlledby
PrQUS..
upto 0
TMZ9c..
/
e6154..
ownership of
5bec5..
as prop with payaddr
PrQUS..
rightscost 0.00 controlledby
PrQUS..
upto 0
TMRke..
/
a73c9..
ownership of
6e356..
as prop with payaddr
PrQUS..
rightscost 0.00 controlledby
PrQUS..
upto 0
TMPbN..
/
39f00..
ownership of
be2ee..
as prop with payaddr
PrQUS..
rightscost 0.00 controlledby
PrQUS..
upto 0
PUhMi..
/
534b8..
doc published by
PrQUS..
Param
bij
bij
:
ι
→
ι
→
(
ι
→
ι
) →
ο
Definition
equip
equip
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
bij
x0
x1
x3
⟶
x2
)
⟶
x2
Param
real
real
:
ι
Param
omega
omega
:
ι
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
inj
inj
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
Definition
atleastp
atleastp
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
inj
x0
x1
x3
⟶
x2
)
⟶
x2
Known
2c48a..
atleastp_antisym_equip
:
∀ x0 x1 .
atleastp
x0
x1
⟶
atleastp
x1
x0
⟶
equip
x0
x1
Param
SNoS_
SNoS_
:
ι
→
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Known
atleastp_tra
atleastp_tra
:
∀ x0 x1 x2 .
atleastp
x0
x1
⟶
atleastp
x1
x2
⟶
atleastp
x0
x2
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
Subq_atleastp
Subq_atleastp
:
∀ x0 x1 .
x0
⊆
x1
⟶
atleastp
x0
x1
Param
SNo
SNo
:
ι
→
ο
Param
SNoLev
SNoLev
:
ι
→
ι
Param
SNoLt
SNoLt
:
ι
→
ι
→
ο
Param
minus_SNo
minus_SNo
:
ι
→
ι
Param
abs_SNo
abs_SNo
:
ι
→
ι
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Param
eps_
eps_
:
ι
→
ι
Known
real_E
real_E
:
∀ x0 .
x0
∈
real
⟶
∀ x1 : ο .
(
SNo
x0
⟶
SNoLev
x0
∈
ordsucc
omega
⟶
x0
∈
SNoS_
(
ordsucc
omega
)
⟶
SNoLt
(
minus_SNo
omega
)
x0
⟶
SNoLt
x0
omega
⟶
(
∀ x2 .
x2
∈
SNoS_
omega
⟶
(
∀ x3 .
x3
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x2
(
minus_SNo
x0
)
)
)
(
eps_
x3
)
)
⟶
x2
=
x0
)
⟶
(
∀ x2 .
x2
∈
omega
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
SNoS_
omega
)
(
and
(
SNoLt
x4
x0
)
(
SNoLt
x0
(
add_SNo
x4
(
eps_
x2
)
)
)
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
Definition
TransSet
TransSet
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Definition
ordinal
ordinal
:=
λ x0 .
and
(
TransSet
x0
)
(
∀ x1 .
x1
∈
x0
⟶
TransSet
x1
)
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
SetAdjoin
SetAdjoin
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Definition
SNoElts_
SNoElts_
:=
λ x0 .
binunion
x0
{
SetAdjoin
x1
(
Sing
1
)
|x1 ∈
x0
}
Param
exactly1of2
exactly1of2
:
ο
→
ο
→
ο
Definition
SNo_
SNo_
:=
λ x0 x1 .
and
(
x1
⊆
SNoElts_
x0
)
(
∀ x2 .
x2
∈
x0
⟶
exactly1of2
(
SetAdjoin
x2
(
Sing
1
)
∈
x1
)
(
x2
∈
x1
)
)
Known
SNoS_I
SNoS_I
:
∀ x0 .
ordinal
x0
⟶
∀ x1 x2 .
x2
∈
x0
⟶
SNo_
x2
x1
⟶
x1
∈
SNoS_
x0
Known
ordsucc_omega_ordinal
ordsucc_omega_ordinal
:
ordinal
(
ordsucc
omega
)
Known
SNoLev_
SNoLev_
:
∀ x0 .
SNo
x0
⟶
SNo_
(
SNoLev
x0
)
x0
Known
atleastp_SNoS_ordsucc_omega_Power_omega
atleastp_SNoS_ordsucc_omega_Power_omega
:
atleastp
(
SNoS_
(
ordsucc
omega
)
)
(
prim4
omega
)
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Param
nat_primrec
nat_primrec
:
ι
→
(
ι
→
ι
→
ι
) →
ι
→
ι
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Known
nat_primrec_0
nat_primrec_0
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
nat_primrec
x0
x1
0
=
x0
Known
If_i_1
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Param
nat_p
nat_p
:
ι
→
ο
Known
nat_primrec_S
nat_primrec_S
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
nat_p
x2
⟶
nat_primrec
x0
x1
(
ordsucc
x2
)
=
x1
x2
(
nat_primrec
x0
x1
x2
)
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Known
If_i_0
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Param
finite
finite
:
ι
→
ο
Param
SNoLe
SNoLe
:
ι
→
ι
→
ο
Definition
SNo_max_of
SNo_max_of
:=
λ x0 x1 .
and
(
and
(
x1
∈
x0
)
(
SNo
x1
)
)
(
∀ x2 .
x2
∈
x0
⟶
SNo
x2
⟶
SNoLe
x2
x1
)
Definition
SNo_min_of
SNo_min_of
:=
λ x0 x1 .
and
(
and
(
x1
∈
x0
)
(
SNo
x1
)
)
(
∀ x2 .
x2
∈
x0
⟶
SNo
x2
⟶
SNoLe
x1
x2
)
Param
famunion
famunion
:
ι
→
(
ι
→
ι
) →
ι
Definition
SNoCutP
SNoCutP
:=
λ x0 x1 .
and
(
and
(
∀ x2 .
x2
∈
x0
⟶
SNo
x2
)
(
∀ x2 .
x2
∈
x1
⟶
SNo
x2
)
)
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
⟶
SNoLt
x2
x3
)
Param
SNoCut
SNoCut
:
ι
→
ι
→
ι
Definition
iff
iff
:=
λ x0 x1 : ο .
and
(
x0
⟶
x1
)
(
x1
⟶
x0
)
Param
ReplSep
ReplSep
:
ι
→
(
ι
→
ο
) →
(
ι
→
ι
) →
ι
Param
setminus
setminus
:
ι
→
ι
→
ι
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
real_add_SNo
real_add_SNo
:
∀ x0 .
x0
∈
real
⟶
∀ x1 .
x1
∈
real
⟶
add_SNo
x0
x1
∈
real
Known
SNoS_omega_real
SNoS_omega_real
:
SNoS_
omega
⊆
real
Known
omega_SNoS_omega
omega_SNoS_omega
:
omega
⊆
SNoS_
omega
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
nat_1
nat_1
:
nat_p
1
Definition
infinite
infinite
:=
λ x0 .
not
(
finite
x0
)
Known
real_minus_SNo
real_minus_SNo
:
∀ x0 .
x0
∈
real
⟶
minus_SNo
x0
∈
real
Known
PowerI
PowerI
:
∀ x0 x1 .
x1
⊆
x0
⟶
x1
∈
prim4
x0
Known
setminus_Subq
setminus_Subq
:
∀ x0 x1 .
setminus
x0
x1
⊆
x0
Known
real_SNoCut_SNoS_omega
real_SNoCut_SNoS_omega
:
∀ x0 .
x0
⊆
SNoS_
omega
⟶
∀ x1 .
x1
⊆
SNoS_
omega
⟶
SNoCutP
x0
x1
⟶
(
x0
=
0
⟶
∀ x2 : ο .
x2
)
⟶
(
x1
=
0
⟶
∀ x2 : ο .
x2
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
SNoLt
x2
x4
)
⟶
x3
)
⟶
x3
)
⟶
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x1
)
(
SNoLt
x4
x2
)
⟶
x3
)
⟶
x3
)
⟶
SNoCut
x0
x1
∈
real
Known
famunionE_impred
famunionE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
famunion
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
∈
x1
x4
⟶
x3
)
⟶
x3
Known
nat_ind
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
omega_ordinal
omega_ordinal
:
ordinal
omega
Known
nat_0
nat_0
:
nat_p
0
Known
ordinal_SNo_
ordinal_SNo_
:
∀ x0 .
ordinal
x0
⟶
SNo_
x0
x0
Known
ordinal_Empty
ordinal_Empty
:
ordinal
0
Known
binunion_Subq_min
binunion_Subq_min
:
∀ x0 x1 x2 .
x0
⊆
x2
⟶
x1
⊆
x2
⟶
binunion
x0
x1
⊆
x2
Known
ReplE_impred
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Known
add_SNo_SNoS_omega
add_SNo_SNoS_omega
:
∀ x0 .
x0
∈
SNoS_
omega
⟶
∀ x1 .
x1
∈
SNoS_
omega
⟶
add_SNo
x0
x1
∈
SNoS_
omega
Known
SNo_eps_SNoS_omega
SNo_eps_SNoS_omega
:
∀ x0 .
x0
∈
omega
⟶
eps_
x0
∈
SNoS_
omega
Known
omega_ordsucc
omega_ordsucc
:
∀ x0 .
x0
∈
omega
⟶
ordsucc
x0
∈
omega
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
minus_SNo_SNoS_omega
minus_SNo_SNoS_omega
:
∀ x0 .
x0
∈
SNoS_
omega
⟶
minus_SNo
x0
∈
SNoS_
omega
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Known
infinite_bigger
infinite_bigger
:
∀ x0 .
x0
⊆
omega
⟶
infinite
x0
⟶
∀ x1 .
x1
∈
omega
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
x0
)
(
x1
∈
x3
)
⟶
x2
)
⟶
x2
Known
famunionI
famunionI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
x0
⟶
x3
∈
x1
x2
⟶
x3
∈
famunion
x0
x1
Known
binunionI2
binunionI2
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
x2
∈
binunion
x0
x1
Known
ReplI
ReplI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
prim5
x0
x1
Known
add_SNo_eps_Lt
add_SNo_eps_Lt
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
omega
⟶
SNoLt
x0
(
add_SNo
x0
(
eps_
x1
)
)
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Known
add_SNo_0R
add_SNo_0R
:
∀ x0 .
SNo
x0
⟶
add_SNo
x0
0
=
x0
Known
add_SNo_Lt2
add_SNo_Lt2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x1
x2
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
x0
x2
)
Known
SNo_minus_SNo
SNo_minus_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
minus_SNo
x0
)
Known
SNo_eps_
SNo_eps_
:
∀ x0 .
x0
∈
omega
⟶
SNo
(
eps_
x0
)
Known
SNo_0
SNo_0
:
SNo
0
Known
minus_SNo_0
minus_SNo_0
:
minus_SNo
0
=
0
Known
minus_SNo_Lt_contra
minus_SNo_Lt_contra
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
x0
x1
⟶
SNoLt
(
minus_SNo
x1
)
(
minus_SNo
x0
)
Known
SNo_eps_pos
SNo_eps_pos
:
∀ x0 .
x0
∈
omega
⟶
SNoLt
0
(
eps_
x0
)
Known
PowerE
PowerE
:
∀ x0 x1 .
x1
∈
prim4
x0
⟶
x1
⊆
x0
Known
SNoS_E2
SNoS_E2
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
SNoS_
x0
⟶
∀ x2 : ο .
(
SNoLev
x1
∈
x0
⟶
ordinal
(
SNoLev
x1
)
⟶
SNo
x1
⟶
SNo_
(
SNoLev
x1
)
x1
⟶
x2
)
⟶
x2
Known
add_SNo_cancel_R
add_SNo_cancel_R
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
x1
=
add_SNo
x2
x1
⟶
x0
=
x2
Known
SNo_1
SNo_1
:
SNo
1
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
SNoLt_irref
SNoLt_irref
:
∀ x0 .
not
(
SNoLt
x0
x0
)
Known
SNoLt_tra
SNoLt_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x1
⟶
SNoLt
x1
x2
⟶
SNoLt
x0
x2
Known
binunionI1
binunionI1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
binunion
x0
x1
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Known
SNo_add_SNo
SNo_add_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
Known
SNoLt_0_1
SNoLt_0_1
:
SNoLt
0
1
Known
minus_SNo_Lt_contra1
minus_SNo_Lt_contra1
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
(
minus_SNo
x0
)
x1
⟶
SNoLt
(
minus_SNo
x1
)
x0
Known
add_SNo_0L
add_SNo_0L
:
∀ x0 .
SNo
x0
⟶
add_SNo
0
x0
=
x0
Known
add_SNo_Lt1
add_SNo_Lt1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x2
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
x2
x1
)
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Known
setminusE2
setminusE2
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
nIn
x2
x1
Known
setminusI
setminusI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
nIn
x2
x1
⟶
x2
∈
setminus
x0
x1
Known
minus_SNo_invol
minus_SNo_invol
:
∀ x0 .
SNo
x0
⟶
minus_SNo
(
minus_SNo
x0
)
=
x0
Known
nat_ordsucc
nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
ordsucc
x0
)
Known
ordsuccI2
ordsuccI2
:
∀ x0 .
x0
∈
ordsucc
x0
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
ReplSepE_impred
ReplSepE_impred
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 .
x3
∈
ReplSep
x0
x1
x2
⟶
∀ x4 : ο .
(
∀ x5 .
x5
∈
x0
⟶
x1
x5
⟶
x3
=
x2
x5
⟶
x4
)
⟶
x4
Known
tagged_not_ordinal
tagged_not_ordinal
:
∀ x0 .
not
(
ordinal
(
SetAdjoin
x0
(
Sing
1
)
)
)
Definition
PNoEq_
PNoEq_
:=
λ x0 .
λ x1 x2 :
ι → ο
.
∀ x3 .
x3
∈
x0
⟶
iff
(
x1
x3
)
(
x2
x3
)
Definition
SNoEq_
SNoEq_
:=
λ x0 x1 x2 .
PNoEq_
x0
(
λ x3 .
x3
∈
x1
)
(
λ x3 .
x3
∈
x2
)
Known
SNoLtI2
SNoLtI2
:
∀ x0 x1 .
SNoLev
x0
∈
SNoLev
x1
⟶
SNoEq_
(
SNoLev
x0
)
x0
x1
⟶
SNoLev
x0
∈
x1
⟶
SNoLt
x0
x1
Known
SNoLev_0
SNoLev_0
:
SNoLev
0
=
0
Known
least_ordinal_ex
least_ordinal_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
and
(
ordinal
x2
)
(
x0
x2
)
⟶
x1
)
⟶
x1
)
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
and
(
ordinal
x2
)
(
x0
x2
)
)
(
∀ x3 .
x3
∈
x2
⟶
not
(
x0
x3
)
)
⟶
x1
)
⟶
x1
Known
SNo_SNo
SNo_SNo
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
SNo_
x0
x1
⟶
SNo
x1
Known
famunion_Empty
famunion_Empty
:
∀ x0 :
ι → ι
.
famunion
0
x0
=
0
Known
binunion_idl
binunion_idl
:
∀ x0 .
binunion
0
x0
=
x0
Known
finite_max_exists
finite_max_exists
:
∀ x0 .
(
∀ x1 .
x1
∈
x0
⟶
SNo
x1
)
⟶
finite
x0
⟶
(
x0
=
0
⟶
∀ x1 : ο .
x1
)
⟶
∀ x1 : ο .
(
∀ x2 .
SNo_max_of
x0
x2
⟶
x1
)
⟶
x1
Known
nat_p_SNo
nat_p_SNo
:
∀ x0 .
nat_p
x0
⟶
SNo
x0
Known
ordinal_In_Or_Subq
ordinal_In_Or_Subq
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
x0
∈
x1
)
(
x1
⊆
x0
)
Known
SNoLeLt_tra
SNoLeLt_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x1
⟶
SNoLt
x1
x2
⟶
SNoLt
x0
x2
Known
SNoLtLe_tra
SNoLtLe_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x1
⟶
SNoLe
x1
x2
⟶
SNoLt
x0
x2
Known
ordinal_SNo
ordinal_SNo
:
∀ x0 .
ordinal
x0
⟶
SNo
x0
Known
ordinal_In_SNoLt
ordinal_In_SNoLt
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
SNoLt
x1
x0
Known
ordinal_Subq_SNoLe
ordinal_Subq_SNoLe
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
x0
⊆
x1
⟶
SNoLe
x0
x1
Known
ordinal_Hered
ordinal_Hered
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordinal
x1
Known
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Known
In_no2cycle
In_no2cycle
:
∀ x0 x1 .
x0
∈
x1
⟶
x1
∈
x0
⟶
False
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Known
exactly1of2_I2
exactly1of2_I2
:
∀ x0 x1 : ο .
not
x0
⟶
x1
⟶
exactly1of2
x0
x1
Known
tagged_eqE_eq
tagged_eqE_eq
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
SetAdjoin
x0
(
Sing
1
)
=
SetAdjoin
x1
(
Sing
1
)
⟶
x0
=
x1
Known
exactly1of2_I1
exactly1of2_I1
:
∀ x0 x1 : ο .
x0
⟶
not
x1
⟶
exactly1of2
x0
x1
Known
ReplSepI
ReplSepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 .
x3
∈
x0
⟶
x1
x3
⟶
x2
x3
∈
ReplSep
x0
x1
x2
Known
ordinal_trichotomy_or_impred
ordinal_trichotomy_or_impred
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 : ο .
(
x0
∈
x1
⟶
x2
)
⟶
(
x0
=
x1
⟶
x2
)
⟶
(
x1
∈
x0
⟶
x2
)
⟶
x2
Known
binunion_finite
binunion_finite
:
∀ x0 .
finite
x0
⟶
∀ x1 .
finite
x1
⟶
finite
(
binunion
x0
x1
)
Known
28148..
Sing_finite
:
∀ x0 .
finite
(
Sing
x0
)
Known
Repl_finite
Repl_finite
:
∀ x0 :
ι → ι
.
∀ x1 .
finite
x1
⟶
finite
(
prim5
x1
x0
)
Known
neq_ordsucc_0
neq_ordsucc_0
:
∀ x0 .
ordsucc
x0
=
0
⟶
∀ x1 : ο .
x1
Known
ordsucc_inj
ordsucc_inj
:
∀ x0 x1 .
ordsucc
x0
=
ordsucc
x1
⟶
x0
=
x1
Known
SNoCutP_SNoCut_impred
SNoCutP_SNoCut_impred
:
∀ x0 x1 .
SNoCutP
x0
x1
⟶
∀ x2 : ο .
(
SNo
(
SNoCut
x0
x1
)
⟶
SNoLev
(
SNoCut
x0
x1
)
∈
ordsucc
(
binunion
(
famunion
x0
(
λ x3 .
ordsucc
(
SNoLev
x3
)
)
)
(
famunion
x1
(
λ x3 .
ordsucc
(
SNoLev
x3
)
)
)
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
SNoLt
x3
(
SNoCut
x0
x1
)
)
⟶
(
∀ x3 .
x3
∈
x1
⟶
SNoLt
(
SNoCut
x0
x1
)
x3
)
⟶
(
∀ x3 .
SNo
x3
⟶
(
∀ x4 .
x4
∈
x0
⟶
SNoLt
x4
x3
)
⟶
(
∀ x4 .
x4
∈
x1
⟶
SNoLt
x3
x4
)
⟶
and
(
SNoLev
(
SNoCut
x0
x1
)
⊆
SNoLev
x3
)
(
SNoEq_
(
SNoLev
(
SNoCut
x0
x1
)
)
(
SNoCut
x0
x1
)
x3
)
)
⟶
x2
)
⟶
x2
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
iffI
iffI
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
iff
x0
x1
Known
finite_min_exists
finite_min_exists
:
∀ x0 .
(
∀ x1 .
x1
∈
x0
⟶
SNo
x1
)
⟶
finite
x0
⟶
(
x0
=
0
⟶
∀ x1 : ο .
x1
)
⟶
∀ x1 : ο .
(
∀ x2 .
SNo_min_of
x0
x2
⟶
x1
)
⟶
x1
Known
eps_ordsucc_half_add
eps_ordsucc_half_add
:
∀ x0 .
nat_p
x0
⟶
add_SNo
(
eps_
(
ordsucc
x0
)
)
(
eps_
(
ordsucc
x0
)
)
=
eps_
x0
Known
add_SNo_assoc
add_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
(
add_SNo
x0
x1
)
x2
Known
add_SNo_minus_R2
add_SNo_minus_R2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
(
add_SNo
x0
x1
)
(
minus_SNo
x1
)
=
x0
Known
eps_0_1
eps_0_1
:
eps_
0
=
1
Known
SNoLe_antisym
SNoLe_antisym
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLe
x0
x1
⟶
SNoLe
x1
x0
⟶
x0
=
x1
Known
add_SNo_Le1
add_SNo_Le1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x2
⟶
SNoLe
(
add_SNo
x0
x1
)
(
add_SNo
x2
x1
)
Known
nat_inv_impred
nat_inv_impred
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
nat_0_in_ordsucc
nat_0_in_ordsucc
:
∀ x0 .
nat_p
x0
⟶
0
∈
ordsucc
x0
Known
Subq_tra
Subq_tra
:
∀ x0 x1 x2 .
x0
⊆
x1
⟶
x1
⊆
x2
⟶
x0
⊆
x2
Known
Subq_ref
Subq_ref
:
∀ x0 .
x0
⊆
x0
Known
binunion_Subq_1
binunion_Subq_1
:
∀ x0 x1 .
x0
⊆
binunion
x0
x1
Theorem
equip_real_Power_omega
equip_real_Power_omega
:
equip
real
(
prim4
omega
)
(proof)
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Known
form100_22_v2
form100_22_v2
:
∀ x0 :
ι → ι
.
not
(
inj
(
prim4
omega
)
omega
x0
)
Known
inj_comp
inj_comp
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι → ι
.
inj
x0
x1
x3
⟶
inj
x1
x2
x4
⟶
inj
x0
x2
(
λ x5 .
x4
(
x3
x5
)
)
Known
bij_inj
bij_inj
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
bij
x0
x1
x2
⟶
inj
x0
x1
x2
Theorem
form100_22_real_uncountable_atleastp
form100_22_real_uncountable_atleastp
:
not
(
atleastp
real
omega
)
(proof)
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Theorem
form100_22_real_uncountable_equip
form100_22_real_uncountable_equip
:
not
(
equip
real
omega
)
(proof)