Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrNHZ../7c645..
PUfjS../fe06a..
vout
PrNHZ../2723b.. 63.94 bars
TMUwe../c7154.. negprop ownership controlledby PrQUS.. upto 0
TMFbb../b0df6.. negprop ownership controlledby PrQUS.. upto 0
TMF7m../8f590.. ownership of 5a8d6.. as prop with payaddr PrQUS.. rightscost 0.00 controlledby PrQUS.. upto 0
TMJEj../a6c1c.. ownership of bea95.. as prop with payaddr PrQUS.. rightscost 0.00 controlledby PrQUS.. upto 0
TMPDh../70285.. ownership of e8cda.. as prop with payaddr PrQUS.. rightscost 0.00 controlledby PrQUS.. upto 0
TMZ9c../e6154.. ownership of 5bec5.. as prop with payaddr PrQUS.. rightscost 0.00 controlledby PrQUS.. upto 0
TMRke../a73c9.. ownership of 6e356.. as prop with payaddr PrQUS.. rightscost 0.00 controlledby PrQUS.. upto 0
TMPbN../39f00.. ownership of be2ee.. as prop with payaddr PrQUS.. rightscost 0.00 controlledby PrQUS.. upto 0
PUhMi../534b8.. doc published by PrQUS..
Param bijbij : ιι(ιι) → ο
Definition equipequip := λ x0 x1 . ∀ x2 : ο . (∀ x3 : ι → ι . bij x0 x1 x3x2)x2
Param realreal : ι
Param omegaomega : ι
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition injinj := λ x0 x1 . λ x2 : ι → ι . and (∀ x3 . x3x0x2 x3x1) (∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)
Definition atleastpatleastp := λ x0 x1 . ∀ x2 : ο . (∀ x3 : ι → ι . inj x0 x1 x3x2)x2
Known 2c48a..atleastp_antisym_equip : ∀ x0 x1 . atleastp x0 x1atleastp x1 x0equip x0 x1
Param SNoS_SNoS_ : ιι
Param ordsuccordsucc : ιι
Known atleastp_traatleastp_tra : ∀ x0 x1 x2 . atleastp x0 x1atleastp x1 x2atleastp x0 x2
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Known Subq_atleastpSubq_atleastp : ∀ x0 x1 . x0x1atleastp x0 x1
Param SNoSNo : ιο
Param SNoLevSNoLev : ιι
Param SNoLtSNoLt : ιιο
Param minus_SNominus_SNo : ιι
Param abs_SNoabs_SNo : ιι
Param add_SNoadd_SNo : ιιι
Param eps_eps_ : ιι
Known real_Ereal_E : ∀ x0 . x0real∀ x1 : ο . (SNo x0SNoLev x0ordsucc omegax0SNoS_ (ordsucc omega)SNoLt (minus_SNo omega) x0SNoLt x0 omega(∀ x2 . x2SNoS_ omega(∀ x3 . x3omegaSNoLt (abs_SNo (add_SNo x2 (minus_SNo x0))) (eps_ x3))x2 = x0)(∀ x2 . x2omega∀ x3 : ο . (∀ x4 . and (x4SNoS_ omega) (and (SNoLt x4 x0) (SNoLt x0 (add_SNo x4 (eps_ x2))))x3)x3)x1)x1
Definition TransSetTransSet := λ x0 . ∀ x1 . x1x0x1x0
Definition ordinalordinal := λ x0 . and (TransSet x0) (∀ x1 . x1x0TransSet x1)
Param binunionbinunion : ιιι
Param SetAdjoinSetAdjoin : ιιι
Param SingSing : ιι
Definition SNoElts_SNoElts_ := λ x0 . binunion x0 {SetAdjoin x1 (Sing 1)|x1 ∈ x0}
Param exactly1of2exactly1of2 : οοο
Definition SNo_SNo_ := λ x0 x1 . and (x1SNoElts_ x0) (∀ x2 . x2x0exactly1of2 (SetAdjoin x2 (Sing 1)x1) (x2x1))
Known SNoS_ISNoS_I : ∀ x0 . ordinal x0∀ x1 x2 . x2x0SNo_ x2 x1x1SNoS_ x0
Known ordsucc_omega_ordinalordsucc_omega_ordinal : ordinal (ordsucc omega)
Known SNoLev_SNoLev_ : ∀ x0 . SNo x0SNo_ (SNoLev x0) x0
Known atleastp_SNoS_ordsucc_omega_Power_omegaatleastp_SNoS_ordsucc_omega_Power_omega : atleastp (SNoS_ (ordsucc omega)) (prim4 omega)
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Param nat_primrecnat_primrec : ι(ιιι) → ιι
Param If_iIf_i : οιιι
Known nat_primrec_0nat_primrec_0 : ∀ x0 . ∀ x1 : ι → ι → ι . nat_primrec x0 x1 0 = x0
Known If_i_1If_i_1 : ∀ x0 : ο . ∀ x1 x2 . x0If_i x0 x1 x2 = x1
Param nat_pnat_p : ιο
Known nat_primrec_Snat_primrec_S : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 . nat_p x2nat_primrec x0 x1 (ordsucc x2) = x1 x2 (nat_primrec x0 x1 x2)
Known omega_nat_pomega_nat_p : ∀ x0 . x0omeganat_p x0
Known If_i_0If_i_0 : ∀ x0 : ο . ∀ x1 x2 . not x0If_i x0 x1 x2 = x2
Param finitefinite : ιο
Param SNoLeSNoLe : ιιο
Definition SNo_max_ofSNo_max_of := λ x0 x1 . and (and (x1x0) (SNo x1)) (∀ x2 . x2x0SNo x2SNoLe x2 x1)
Definition SNo_min_ofSNo_min_of := λ x0 x1 . and (and (x1x0) (SNo x1)) (∀ x2 . x2x0SNo x2SNoLe x1 x2)
Param famunionfamunion : ι(ιι) → ι
Definition SNoCutPSNoCutP := λ x0 x1 . and (and (∀ x2 . x2x0SNo x2) (∀ x2 . x2x1SNo x2)) (∀ x2 . x2x0∀ x3 . x3x1SNoLt x2 x3)
Param SNoCutSNoCut : ιιι
Definition iffiff := λ x0 x1 : ο . and (x0x1) (x1x0)
Param ReplSepReplSep : ι(ιο) → (ιι) → ι
Param setminussetminus : ιιι
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known real_add_SNoreal_add_SNo : ∀ x0 . x0real∀ x1 . x1realadd_SNo x0 x1real
Known SNoS_omega_realSNoS_omega_real : SNoS_ omegareal
Known omega_SNoS_omegaomega_SNoS_omega : omegaSNoS_ omega
Known nat_p_omeganat_p_omega : ∀ x0 . nat_p x0x0omega
Known nat_1nat_1 : nat_p 1
Definition infiniteinfinite := λ x0 . not (finite x0)
Known real_minus_SNoreal_minus_SNo : ∀ x0 . x0realminus_SNo x0real
Known PowerIPowerI : ∀ x0 x1 . x1x0x1prim4 x0
Known setminus_Subqsetminus_Subq : ∀ x0 x1 . setminus x0 x1x0
Known real_SNoCut_SNoS_omegareal_SNoCut_SNoS_omega : ∀ x0 . x0SNoS_ omega∀ x1 . x1SNoS_ omegaSNoCutP x0 x1(x0 = 0∀ x2 : ο . x2)(x1 = 0∀ x2 : ο . x2)(∀ x2 . x2x0∀ x3 : ο . (∀ x4 . and (x4x0) (SNoLt x2 x4)x3)x3)(∀ x2 . x2x1∀ x3 : ο . (∀ x4 . and (x4x1) (SNoLt x4 x2)x3)x3)SNoCut x0 x1real
Known famunionE_impredfamunionE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2famunion x0 x1∀ x3 : ο . (∀ x4 . x4x0x2x1 x4x3)x3
Known nat_indnat_ind : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known omega_ordinalomega_ordinal : ordinal omega
Known nat_0nat_0 : nat_p 0
Known ordinal_SNo_ordinal_SNo_ : ∀ x0 . ordinal x0SNo_ x0 x0
Known ordinal_Emptyordinal_Empty : ordinal 0
Known binunion_Subq_minbinunion_Subq_min : ∀ x0 x1 x2 . x0x2x1x2binunion x0 x1x2
Known ReplE_impredReplE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2prim5 x0 x1∀ x3 : ο . (∀ x4 . x4x0x2 = x1 x4x3)x3
Known add_SNo_SNoS_omegaadd_SNo_SNoS_omega : ∀ x0 . x0SNoS_ omega∀ x1 . x1SNoS_ omegaadd_SNo x0 x1SNoS_ omega
Known SNo_eps_SNoS_omegaSNo_eps_SNoS_omega : ∀ x0 . x0omegaeps_ x0SNoS_ omega
Known omega_ordsuccomega_ordsucc : ∀ x0 . x0omegaordsucc x0omega
Known nat_p_ordinalnat_p_ordinal : ∀ x0 . nat_p x0ordinal x0
Known minus_SNo_SNoS_omegaminus_SNo_SNoS_omega : ∀ x0 . x0SNoS_ omegaminus_SNo x0SNoS_ omega
Known EmptyEEmptyE : ∀ x0 . nIn x0 0
Known infinite_biggerinfinite_bigger : ∀ x0 . x0omegainfinite x0∀ x1 . x1omega∀ x2 : ο . (∀ x3 . and (x3x0) (x1x3)x2)x2
Known famunionIfamunionI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2x0x3x1 x2x3famunion x0 x1
Known binunionI2binunionI2 : ∀ x0 x1 x2 . x2x1x2binunion x0 x1
Known ReplIReplI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0x1 x2prim5 x0 x1
Known add_SNo_eps_Ltadd_SNo_eps_Lt : ∀ x0 . SNo x0∀ x1 . x1omegaSNoLt x0 (add_SNo x0 (eps_ x1))
Known setminusEsetminusE : ∀ x0 x1 x2 . x2setminus x0 x1and (x2x0) (nIn x2 x1)
Known add_SNo_0Radd_SNo_0R : ∀ x0 . SNo x0add_SNo x0 0 = x0
Known add_SNo_Lt2add_SNo_Lt2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x1 x2SNoLt (add_SNo x0 x1) (add_SNo x0 x2)
Known SNo_minus_SNoSNo_minus_SNo : ∀ x0 . SNo x0SNo (minus_SNo x0)
Known SNo_eps_SNo_eps_ : ∀ x0 . x0omegaSNo (eps_ x0)
Known SNo_0SNo_0 : SNo 0
Known minus_SNo_0minus_SNo_0 : minus_SNo 0 = 0
Known minus_SNo_Lt_contraminus_SNo_Lt_contra : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 x1SNoLt (minus_SNo x1) (minus_SNo x0)
Known SNo_eps_posSNo_eps_pos : ∀ x0 . x0omegaSNoLt 0 (eps_ x0)
Known PowerEPowerE : ∀ x0 x1 . x1prim4 x0x1x0
Known SNoS_E2SNoS_E2 : ∀ x0 . ordinal x0∀ x1 . x1SNoS_ x0∀ x2 : ο . (SNoLev x1x0ordinal (SNoLev x1)SNo x1SNo_ (SNoLev x1) x1x2)x2
Known add_SNo_cancel_Radd_SNo_cancel_R : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 x1 = add_SNo x2 x1x0 = x2
Known SNo_1SNo_1 : SNo 1
Known FalseEFalseE : False∀ x0 : ο . x0
Known SNoLt_irrefSNoLt_irref : ∀ x0 . not (SNoLt x0 x0)
Known SNoLt_traSNoLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLt x1 x2SNoLt x0 x2
Known binunionI1binunionI1 : ∀ x0 x1 x2 . x2x0x2binunion x0 x1
Known SingISingI : ∀ x0 . x0Sing x0
Known SNo_add_SNoSNo_add_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (add_SNo x0 x1)
Known SNoLt_0_1SNoLt_0_1 : SNoLt 0 1
Known minus_SNo_Lt_contra1minus_SNo_Lt_contra1 : ∀ x0 x1 . SNo x0SNo x1SNoLt (minus_SNo x0) x1SNoLt (minus_SNo x1) x0
Known add_SNo_0Ladd_SNo_0L : ∀ x0 . SNo x0add_SNo 0 x0 = x0
Known add_SNo_Lt1add_SNo_Lt1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x2SNoLt (add_SNo x0 x1) (add_SNo x2 x1)
Known set_extset_ext : ∀ x0 x1 . x0x1x1x0x0 = x1
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Known setminusE2setminusE2 : ∀ x0 x1 x2 . x2setminus x0 x1nIn x2 x1
Known setminusIsetminusI : ∀ x0 x1 x2 . x2x0nIn x2 x1x2setminus x0 x1
Known minus_SNo_involminus_SNo_invol : ∀ x0 . SNo x0minus_SNo (minus_SNo x0) = x0
Known nat_ordsuccnat_ordsucc : ∀ x0 . nat_p x0nat_p (ordsucc x0)
Known ordsuccI2ordsuccI2 : ∀ x0 . x0ordsucc x0
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known ReplSepE_impredReplSepE_impred : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 : ι → ι . ∀ x3 . x3ReplSep x0 x1 x2∀ x4 : ο . (∀ x5 . x5x0x1 x5x3 = x2 x5x4)x4
Known tagged_not_ordinaltagged_not_ordinal : ∀ x0 . not (ordinal (SetAdjoin x0 (Sing 1)))
Definition PNoEq_PNoEq_ := λ x0 . λ x1 x2 : ι → ο . ∀ x3 . x3x0iff (x1 x3) (x2 x3)
Definition SNoEq_SNoEq_ := λ x0 x1 x2 . PNoEq_ x0 (λ x3 . x3x1) (λ x3 . x3x2)
Known SNoLtI2SNoLtI2 : ∀ x0 x1 . SNoLev x0SNoLev x1SNoEq_ (SNoLev x0) x0 x1SNoLev x0x1SNoLt x0 x1
Known SNoLev_0SNoLev_0 : SNoLev 0 = 0
Known least_ordinal_exleast_ordinal_ex : ∀ x0 : ι → ο . (∀ x1 : ο . (∀ x2 . and (ordinal x2) (x0 x2)x1)x1)∀ x1 : ο . (∀ x2 . and (and (ordinal x2) (x0 x2)) (∀ x3 . x3x2not (x0 x3))x1)x1
Known SNo_SNoSNo_SNo : ∀ x0 . ordinal x0∀ x1 . SNo_ x0 x1SNo x1
Known famunion_Emptyfamunion_Empty : ∀ x0 : ι → ι . famunion 0 x0 = 0
Known binunion_idlbinunion_idl : ∀ x0 . binunion 0 x0 = x0
Known finite_max_existsfinite_max_exists : ∀ x0 . (∀ x1 . x1x0SNo x1)finite x0(x0 = 0∀ x1 : ο . x1)∀ x1 : ο . (∀ x2 . SNo_max_of x0 x2x1)x1
Known nat_p_SNonat_p_SNo : ∀ x0 . nat_p x0SNo x0
Known ordinal_In_Or_Subqordinal_In_Or_Subq : ∀ x0 x1 . ordinal x0ordinal x1or (x0x1) (x1x0)
Known SNoLeLt_traSNoLeLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x1SNoLt x1 x2SNoLt x0 x2
Known SNoLtLe_traSNoLtLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLe x1 x2SNoLt x0 x2
Known ordinal_SNoordinal_SNo : ∀ x0 . ordinal x0SNo x0
Known ordinal_In_SNoLtordinal_In_SNoLt : ∀ x0 . ordinal x0∀ x1 . x1x0SNoLt x1 x0
Known ordinal_Subq_SNoLeordinal_Subq_SNoLe : ∀ x0 x1 . ordinal x0ordinal x1x0x1SNoLe x0 x1
Known ordinal_Heredordinal_Hered : ∀ x0 . ordinal x0∀ x1 . x1x0ordinal x1
Known ordsuccEordsuccE : ∀ x0 x1 . x1ordsucc x0or (x1x0) (x1 = x0)
Known In_no2cycleIn_no2cycle : ∀ x0 x1 . x0x1x1x0False
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Known exactly1of2_I2exactly1of2_I2 : ∀ x0 x1 : ο . not x0x1exactly1of2 x0 x1
Known tagged_eqE_eqtagged_eqE_eq : ∀ x0 x1 . ordinal x0ordinal x1SetAdjoin x0 (Sing 1) = SetAdjoin x1 (Sing 1)x0 = x1
Known exactly1of2_I1exactly1of2_I1 : ∀ x0 x1 : ο . x0not x1exactly1of2 x0 x1
Known ReplSepIReplSepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 : ι → ι . ∀ x3 . x3x0x1 x3x2 x3ReplSep x0 x1 x2
Known ordinal_trichotomy_or_impredordinal_trichotomy_or_impred : ∀ x0 x1 . ordinal x0ordinal x1∀ x2 : ο . (x0x1x2)(x0 = x1x2)(x1x0x2)x2
Known binunion_finitebinunion_finite : ∀ x0 . finite x0∀ x1 . finite x1finite (binunion x0 x1)
Known 28148..Sing_finite : ∀ x0 . finite (Sing x0)
Known Repl_finiteRepl_finite : ∀ x0 : ι → ι . ∀ x1 . finite x1finite (prim5 x1 x0)
Known neq_ordsucc_0neq_ordsucc_0 : ∀ x0 . ordsucc x0 = 0∀ x1 : ο . x1
Known ordsucc_injordsucc_inj : ∀ x0 x1 . ordsucc x0 = ordsucc x1x0 = x1
Known SNoCutP_SNoCut_impredSNoCutP_SNoCut_impred : ∀ x0 x1 . SNoCutP x0 x1∀ x2 : ο . (SNo (SNoCut x0 x1)SNoLev (SNoCut x0 x1)ordsucc (binunion (famunion x0 (λ x3 . ordsucc (SNoLev x3))) (famunion x1 (λ x3 . ordsucc (SNoLev x3))))(∀ x3 . x3x0SNoLt x3 (SNoCut x0 x1))(∀ x3 . x3x1SNoLt (SNoCut x0 x1) x3)(∀ x3 . SNo x3(∀ x4 . x4x0SNoLt x4 x3)(∀ x4 . x4x1SNoLt x3 x4)and (SNoLev (SNoCut x0 x1)SNoLev x3) (SNoEq_ (SNoLev (SNoCut x0 x1)) (SNoCut x0 x1) x3))x2)x2
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Known iffIiffI : ∀ x0 x1 : ο . (x0x1)(x1x0)iff x0 x1
Known finite_min_existsfinite_min_exists : ∀ x0 . (∀ x1 . x1x0SNo x1)finite x0(x0 = 0∀ x1 : ο . x1)∀ x1 : ο . (∀ x2 . SNo_min_of x0 x2x1)x1
Known eps_ordsucc_half_addeps_ordsucc_half_add : ∀ x0 . nat_p x0add_SNo (eps_ (ordsucc x0)) (eps_ (ordsucc x0)) = eps_ x0
Known add_SNo_assocadd_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo (add_SNo x0 x1) x2
Known add_SNo_minus_R2add_SNo_minus_R2 : ∀ x0 x1 . SNo x0SNo x1add_SNo (add_SNo x0 x1) (minus_SNo x1) = x0
Known eps_0_1eps_0_1 : eps_ 0 = 1
Known SNoLe_antisymSNoLe_antisym : ∀ x0 x1 . SNo x0SNo x1SNoLe x0 x1SNoLe x1 x0x0 = x1
Known add_SNo_Le1add_SNo_Le1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x2SNoLe (add_SNo x0 x1) (add_SNo x2 x1)
Known nat_inv_imprednat_inv_impred : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1
Known nat_0_in_ordsuccnat_0_in_ordsucc : ∀ x0 . nat_p x00ordsucc x0
Known Subq_traSubq_tra : ∀ x0 x1 x2 . x0x1x1x2x0x2
Known Subq_refSubq_ref : ∀ x0 . x0x0
Known binunion_Subq_1binunion_Subq_1 : ∀ x0 x1 . x0binunion x0 x1
Theorem equip_real_Power_omegaequip_real_Power_omega : equip real (prim4 omega) (proof)
Known equip_symequip_sym : ∀ x0 x1 . equip x0 x1equip x1 x0
Known form100_22_v2form100_22_v2 : ∀ x0 : ι → ι . not (inj (prim4 omega) omega x0)
Known inj_compinj_comp : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι . inj x0 x1 x3inj x1 x2 x4inj x0 x2 (λ x5 . x4 (x3 x5))
Known bij_injbij_inj : ∀ x0 x1 . ∀ x2 : ι → ι . bij x0 x1 x2inj x0 x1 x2
Theorem form100_22_real_uncountable_atleastpform100_22_real_uncountable_atleastp : not (atleastp real omega) (proof)
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Theorem form100_22_real_uncountable_equipform100_22_real_uncountable_equip : not (equip real omega) (proof)