Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrKgQ..
/
033c1..
PUXED..
/
8c6a9..
vout
PrKgQ..
/
8c9c5..
0.09 bars
TMMxQ..
/
6ce16..
ownership of
42715..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMdNp..
/
bc622..
ownership of
7acdd..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMKgH..
/
a1e83..
ownership of
e27aa..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMW7x..
/
63c67..
ownership of
adf9a..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMYYb..
/
8c0c1..
ownership of
294e6..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMdHT..
/
dc11e..
ownership of
d843c..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMU7n..
/
4ed40..
ownership of
4d1df..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMQzE..
/
1ddae..
ownership of
78f23..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMV26..
/
25319..
ownership of
7da0d..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMGfK..
/
d7298..
ownership of
14dbc..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMc8R..
/
c958e..
ownership of
2effc..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMEii..
/
1a506..
ownership of
99985..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMXnd..
/
4eb6b..
ownership of
97ee8..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMcVY..
/
8e430..
ownership of
88a05..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMZp5..
/
fd751..
ownership of
310d5..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMPer..
/
fd008..
ownership of
6d263..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMWf3..
/
6b6f7..
ownership of
b370d..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMbFq..
/
b8cfd..
ownership of
7424d..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMavc..
/
1f89c..
ownership of
a9f70..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMGEJ..
/
08699..
ownership of
bb224..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMcat..
/
2846a..
ownership of
1b5dd..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMJRH..
/
6fb12..
ownership of
b83e2..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMT4A..
/
62a41..
ownership of
709ef..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMJ43..
/
f411e..
ownership of
3c864..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMMMo..
/
61119..
ownership of
49c4f..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMS2c..
/
44884..
ownership of
e62c4..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMX2d..
/
9b7cb..
ownership of
e7d0d..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMTG2..
/
48a7b..
ownership of
05312..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMYVh..
/
7239b..
ownership of
96ca7..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMGZK..
/
d493d..
ownership of
034ef..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMa4j..
/
68ce7..
ownership of
7f417..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMHGr..
/
a22c3..
ownership of
6e38f..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMSR8..
/
cb73e..
ownership of
4f1fe..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMLZp..
/
9d5c5..
ownership of
15a03..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMaEV..
/
f1642..
ownership of
2450d..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMWVZ..
/
0ac39..
ownership of
ebb79..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMZCk..
/
6f91b..
ownership of
89edf..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMGc1..
/
f73ac..
ownership of
32580..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMG6F..
/
ce90a..
ownership of
5ade7..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMYWb..
/
84896..
ownership of
96b4e..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMX55..
/
508c2..
ownership of
ece68..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMLMu..
/
9eb8c..
ownership of
90711..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMbvB..
/
2e4cc..
ownership of
060a4..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMMS4..
/
cd8cc..
ownership of
2e9eb..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMXLP..
/
6a2c7..
ownership of
10126..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMTox..
/
eddba..
ownership of
5f514..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMFtp..
/
73572..
ownership of
08ab7..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMJF2..
/
06f5e..
ownership of
82d75..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMHJR..
/
6c4e4..
ownership of
433d4..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMbkv..
/
83189..
ownership of
efcdc..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMGxk..
/
9e8bb..
ownership of
b1bb5..
as obj with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMY33..
/
36cd4..
ownership of
98649..
as obj with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMaWR..
/
da3c1..
ownership of
974cc..
as obj with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMU2F..
/
d0bd3..
ownership of
d344d..
as obj with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
PUKcr..
/
f5ca9..
doc published by
PrEBh..
Param
unpack_r_i
unpack_r_i
:
ι
→
(
ι
→
(
ι
→
ι
→
ο
) →
ι
) →
ι
Param
pack_r
pack_r
:
ι
→
(
ι
→
ι
→
ο
) →
ι
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Definition
setprod
setprod
:=
λ x0 x1 .
lam
x0
(
λ x2 .
x1
)
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
ap
ap
:
ι
→
ι
→
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
BinReln_product
:=
λ x0 x1 .
unpack_r_i
x0
(
λ x2 .
λ x3 :
ι →
ι → ο
.
unpack_r_i
x1
(
λ x4 .
λ x5 :
ι →
ι → ο
.
pack_r
(
setprod
x2
x4
)
(
λ x6 x7 .
and
(
x3
(
ap
x6
0
)
(
ap
x7
0
)
)
(
x5
(
ap
x6
1
)
(
ap
x7
1
)
)
)
)
)
Definition
iff
iff
:=
λ x0 x1 : ο .
and
(
x0
⟶
x1
)
(
x1
⟶
x0
)
Known
unpack_r_i_eq
unpack_r_i_eq
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 :
ι →
ι → ο
.
(
∀ x3 :
ι →
ι → ο
.
(
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
iff
(
x2
x4
x5
)
(
x3
x4
x5
)
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
unpack_r_i
(
pack_r
x1
x2
)
x0
=
x0
x1
x2
Known
pack_r_ext
pack_r_ext
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
iff
(
x1
x3
x4
)
(
x2
x3
x4
)
)
⟶
pack_r
x0
x1
=
pack_r
x0
x2
Known
iffI
iffI
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
iff
x0
x1
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
ap0_Sigma
ap0_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
0
∈
x0
Known
ap1_Sigma
ap1_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
1
∈
x1
(
ap
x2
0
)
Theorem
433d4..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 .
∀ x3 x4 :
ι →
ι → ο
.
x4
(
BinReln_product
(
pack_r
x0
x1
)
(
pack_r
x2
x3
)
)
(
pack_r
(
setprod
x0
x2
)
(
λ x5 x6 .
and
(
x1
(
ap
x5
0
)
(
ap
x6
0
)
)
(
x3
(
ap
x5
1
)
(
ap
x6
1
)
)
)
)
⟶
x4
(
pack_r
(
setprod
x0
x2
)
(
λ x5 x6 .
and
(
x1
(
ap
x5
0
)
(
ap
x6
0
)
)
(
x3
(
ap
x5
1
)
(
ap
x6
1
)
)
)
)
(
BinReln_product
(
pack_r
x0
x1
)
(
pack_r
x2
x3
)
)
(proof)
Definition
struct_r
struct_r
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ο
.
x1
(
pack_r
x2
x3
)
)
⟶
x1
x0
Known
pack_struct_r_I
pack_struct_r_I
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
struct_r
(
pack_r
x0
x1
)
Theorem
08ab7..
:
∀ x0 x1 .
struct_r
x0
⟶
struct_r
x1
⟶
struct_r
(
BinReln_product
x0
x1
)
(proof)
Definition
MetaCat_product_p
product_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 x7 x8 .
λ x9 :
ι →
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x0
x6
)
)
(
x1
x6
x4
x7
)
)
(
x1
x6
x5
x8
)
)
(
∀ x10 .
x0
x10
⟶
∀ x11 x12 .
x1
x10
x4
x11
⟶
x1
x10
x5
x12
⟶
and
(
and
(
and
(
x1
x10
x6
(
x9
x10
x11
x12
)
)
(
x3
x10
x6
x4
x7
(
x9
x10
x11
x12
)
=
x11
)
)
(
x3
x10
x6
x5
x8
(
x9
x10
x11
x12
)
=
x12
)
)
(
∀ x13 .
x1
x10
x6
x13
⟶
x3
x10
x6
x4
x7
x13
=
x11
⟶
x3
x10
x6
x5
x8
x13
=
x12
⟶
x13
=
x9
x10
x11
x12
)
)
Definition
MetaCat_product_constr_p
product_constr_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 :
ι →
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 x9 .
x0
x8
⟶
x0
x9
⟶
MetaCat_product_p
x0
x1
x2
x3
x8
x9
(
x4
x8
x9
)
(
x5
x8
x9
)
(
x6
x8
x9
)
(
x7
x8
x9
)
Param
BinRelnHom
Hom_struct_r
:
ι
→
ι
→
ι
→
ο
Param
struct_id
struct_id
:
ι
→
ι
Definition
lam_comp
lam_comp
:=
λ x0 x1 x2 .
lam
x0
(
λ x3 .
ap
x1
(
ap
x2
x3
)
)
Definition
struct_comp
struct_comp
:=
λ x0 x1 x2 .
lam_comp
(
ap
x0
0
)
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Known
and6I
and6I
:
∀ x0 x1 x2 x3 x4 x5 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
Known
pack_r_0_eq2
pack_r_0_eq2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
x2
x0
(
ap
(
pack_r
x0
x1
)
0
)
⟶
x2
(
ap
(
pack_r
x0
x1
)
0
)
x0
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Param
Pi
Pi
:
ι
→
(
ι
→
ι
) →
ι
Definition
setexp
setexp
:=
λ x0 x1 .
Pi
x1
(
λ x2 .
x0
)
Known
c84ab..
Hom_struct_r_pack
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 .
BinRelnHom
(
pack_r
x0
x2
)
(
pack_r
x1
x3
)
x4
=
and
(
x4
∈
setexp
x1
x0
)
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x2
x6
x7
⟶
x3
(
ap
x4
x6
)
(
ap
x4
x7
)
)
Known
lam_Pi
lam_Pi
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
x3
)
⟶
lam
x0
x2
∈
Pi
x0
x1
Known
beta
beta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
ap
(
lam
x0
x1
)
x2
=
x1
x2
Known
and4I
and4I
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
and
(
and
(
and
x0
x1
)
x2
)
x3
Known
encode_u_ext
encode_u_ext
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x1
x3
=
x2
x3
)
⟶
lam
x0
x1
=
lam
x0
x2
Known
ap_Pi
ap_Pi
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
Pi
x0
x1
⟶
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
Known
Pi_eta
Pi_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
Pi
x0
x1
⟶
lam
x0
(
ap
x2
)
=
x2
Known
tuple_Sigma_eta
tuple_Sigma_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
(
ap
x2
0
)
(
ap
x2
1
)
)
=
x2
Known
tuple_2_1_eq
tuple_2_1_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
1
=
x1
Known
tuple_2_0_eq
tuple_2_0_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
0
=
x0
Known
tuple_2_Sigma
tuple_2_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
x2
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
x2
x3
)
∈
lam
x0
x1
Theorem
10126..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_r
x1
)
⟶
(
∀ x1 x2 .
x0
x1
⟶
x0
x2
⟶
x0
(
BinReln_product
x1
x2
)
)
⟶
MetaCat_product_constr_p
x0
BinRelnHom
struct_id
struct_comp
BinReln_product
(
λ x1 x2 .
lam
(
setprod
(
ap
x1
0
)
(
ap
x2
0
)
)
(
λ x3 .
ap
x3
0
)
)
(
λ x1 x2 .
lam
(
setprod
(
ap
x1
0
)
(
ap
x2
0
)
)
(
λ x3 .
ap
x3
1
)
)
(
λ x1 x2 x3 x4 x5 .
lam
(
ap
x3
0
)
(
λ x6 .
lam
2
(
λ x7 .
If_i
(
x7
=
0
)
(
ap
x4
x6
)
(
ap
x5
x6
)
)
)
)
(proof)
Theorem
060a4..
:
MetaCat_product_constr_p
struct_r
BinRelnHom
struct_id
struct_comp
BinReln_product
(
λ x0 x1 .
lam
(
setprod
(
ap
x0
0
)
(
ap
x1
0
)
)
(
λ x2 .
ap
x2
0
)
)
(
λ x0 x1 .
lam
(
setprod
(
ap
x0
0
)
(
ap
x1
0
)
)
(
λ x2 .
ap
x2
1
)
)
(
λ x0 x1 x2 x3 x4 .
lam
(
ap
x2
0
)
(
λ x5 .
lam
2
(
λ x6 .
If_i
(
x6
=
0
)
(
ap
x3
x5
)
(
ap
x4
x5
)
)
)
)
(proof)
Theorem
ece68..
MetaCat_struct_r_product_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
struct_r
BinRelnHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Definition
BinReln_exp
:=
λ x0 x1 .
unpack_r_i
x0
(
λ x2 .
λ x3 :
ι →
ι → ο
.
unpack_r_i
x1
(
λ x4 .
λ x5 :
ι →
ι → ο
.
pack_r
(
setexp
x4
x2
)
(
λ x6 x7 .
∀ x8 .
x8
∈
x2
⟶
∀ x9 .
x9
∈
x2
⟶
x3
x8
x9
⟶
x5
(
ap
x6
x8
)
(
ap
x7
x9
)
)
)
)
Theorem
5ade7..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 .
∀ x3 x4 :
ι →
ι → ο
.
x4
(
BinReln_exp
(
pack_r
x0
x1
)
(
pack_r
x2
x3
)
)
(
pack_r
(
setexp
x2
x0
)
(
λ x5 x6 .
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x1
x7
x8
⟶
x3
(
ap
x5
x7
)
(
ap
x6
x8
)
)
)
⟶
x4
(
pack_r
(
setexp
x2
x0
)
(
λ x5 x6 .
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x1
x7
x8
⟶
x3
(
ap
x5
x7
)
(
ap
x6
x8
)
)
)
(
BinReln_exp
(
pack_r
x0
x1
)
(
pack_r
x2
x3
)
)
(proof)
Theorem
89edf..
:
∀ x0 x1 .
struct_r
x0
⟶
struct_r
x1
⟶
struct_r
(
BinReln_exp
x0
x1
)
(proof)
Definition
MetaCat_exp_p
exponent_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 :
ι →
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x8 x9 x10 x11 .
λ x12 :
ι →
ι → ι
.
and
(
and
(
and
(
and
(
x0
x8
)
(
x0
x9
)
)
(
x0
x10
)
)
(
x1
(
x4
x10
x8
)
x9
x11
)
)
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x1
(
x4
x13
x8
)
x9
x14
⟶
and
(
and
(
x1
x13
x10
(
x12
x13
x14
)
)
(
x3
(
x4
x13
x8
)
(
x4
x10
x8
)
x9
x11
(
x7
x10
x8
(
x4
x13
x8
)
(
x3
(
x4
x13
x8
)
x13
x10
(
x12
x13
x14
)
(
x5
x13
x8
)
)
(
x6
x13
x8
)
)
=
x14
)
)
(
∀ x15 .
x1
x13
x10
x15
⟶
x3
(
x4
x13
x8
)
(
x4
x10
x8
)
x9
x11
(
x7
x10
x8
(
x4
x13
x8
)
(
x3
(
x4
x13
x8
)
x13
x10
x15
(
x5
x13
x8
)
)
(
x6
x13
x8
)
)
=
x14
⟶
x15
=
x12
x13
x14
)
)
Definition
MetaCat_exp_constr_p
product_exponent_constr_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 :
ι →
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x8 x9 :
ι →
ι → ι
.
λ x10 :
ι →
ι →
ι →
ι → ι
.
and
(
MetaCat_product_constr_p
x0
x1
x2
x3
x4
x5
x6
x7
)
(
∀ x11 x12 .
x0
x11
⟶
x0
x12
⟶
MetaCat_exp_p
x0
x1
x2
x3
x4
x5
x6
x7
x11
x12
(
x8
x11
x12
)
(
x9
x11
x12
)
(
x10
x11
x12
)
)
Known
and5I
and5I
:
∀ x0 x1 x2 x3 x4 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
Known
tuple_2_setprod
tuple_2_setprod
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
x2
x3
)
∈
setprod
x0
x1
Theorem
2450d..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_r
x1
)
⟶
(
∀ x1 x2 .
x0
x1
⟶
x0
x2
⟶
x0
(
BinReln_product
x1
x2
)
)
⟶
(
∀ x1 x2 .
x0
x1
⟶
x0
x2
⟶
x0
(
BinReln_exp
x1
x2
)
)
⟶
MetaCat_exp_constr_p
x0
BinRelnHom
struct_id
struct_comp
BinReln_product
(
λ x1 x2 .
lam
(
setprod
(
ap
x1
0
)
(
ap
x2
0
)
)
(
λ x3 .
ap
x3
0
)
)
(
λ x1 x2 .
lam
(
setprod
(
ap
x1
0
)
(
ap
x2
0
)
)
(
λ x3 .
ap
x3
1
)
)
(
λ x1 x2 x3 x4 x5 .
lam
(
ap
x3
0
)
(
λ x6 .
lam
2
(
λ x7 .
If_i
(
x7
=
0
)
(
ap
x4
x6
)
(
ap
x5
x6
)
)
)
)
BinReln_exp
(
λ x1 x2 .
lam
(
setprod
(
setexp
(
ap
x2
0
)
(
ap
x1
0
)
)
(
ap
x1
0
)
)
(
λ x3 .
ap
(
ap
x3
0
)
(
ap
x3
1
)
)
)
(
λ x1 x2 x3 x4 .
lam
(
ap
x3
0
)
(
λ x5 .
lam
(
ap
x1
0
)
(
λ x6 .
ap
x4
(
lam
2
(
λ x7 .
If_i
(
x7
=
0
)
x5
x6
)
)
)
)
)
(proof)
Theorem
4f1fe..
:
MetaCat_exp_constr_p
struct_r
BinRelnHom
struct_id
struct_comp
BinReln_product
(
λ x0 x1 .
lam
(
setprod
(
ap
x0
0
)
(
ap
x1
0
)
)
(
λ x2 .
ap
x2
0
)
)
(
λ x0 x1 .
lam
(
setprod
(
ap
x0
0
)
(
ap
x1
0
)
)
(
λ x2 .
ap
x2
1
)
)
(
λ x0 x1 x2 x3 x4 .
lam
(
ap
x2
0
)
(
λ x5 .
lam
2
(
λ x6 .
If_i
(
x6
=
0
)
(
ap
x3
x5
)
(
ap
x4
x5
)
)
)
)
BinReln_exp
(
λ x0 x1 .
lam
(
setprod
(
setexp
(
ap
x1
0
)
(
ap
x0
0
)
)
(
ap
x0
0
)
)
(
λ x2 .
ap
(
ap
x2
0
)
(
ap
x2
1
)
)
)
(
λ x0 x1 x2 x3 .
lam
(
ap
x2
0
)
(
λ x4 .
lam
(
ap
x0
0
)
(
λ x5 .
ap
x3
(
lam
2
(
λ x6 .
If_i
(
x6
=
0
)
x4
x5
)
)
)
)
)
(proof)
Theorem
7f417..
MetaCat_struct_r_product_exponent
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι → ι
.
(
∀ x12 : ο .
(
∀ x13 :
ι →
ι →
ι →
ι → ι
.
MetaCat_exp_constr_p
struct_r
BinRelnHom
struct_id
struct_comp
x1
x3
x5
x7
x9
x11
x13
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Param
unpack_r_o
unpack_r_o
:
ι
→
(
ι
→
(
ι
→
ι
→
ο
) →
ο
) →
ο
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
IrreflexiveSymmetricReln
struct_r_graph
:=
λ x0 .
and
(
struct_r
x0
)
(
unpack_r_o
x0
(
λ x1 .
λ x2 :
ι →
ι → ο
.
and
(
∀ x3 .
x3
∈
x1
⟶
not
(
x2
x3
x3
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x3
)
)
)
Known
5344f..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
unpack_r_o
(
pack_r
x0
x1
)
(
λ x3 .
λ x4 :
ι →
ι → ο
.
and
(
∀ x5 .
x5
∈
x3
⟶
not
(
x4
x5
x5
)
)
(
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
x4
x5
x6
⟶
x4
x6
x5
)
)
=
and
(
∀ x3 .
x3
∈
x0
⟶
not
(
x1
x3
x3
)
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x3
x4
⟶
x1
x4
x3
)
Known
36176..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
not
(
x1
x2
x2
)
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
IrreflexiveSymmetricReln
(
pack_r
x0
x1
)
Theorem
96ca7..
:
∀ x0 .
IrreflexiveSymmetricReln
x0
⟶
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 .
x4
∈
x2
⟶
not
(
x3
x4
x4
)
)
⟶
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
x3
x4
x5
⟶
x3
x5
x4
)
⟶
x1
(
pack_r
x2
x3
)
)
⟶
x1
x0
(proof)
Theorem
e7d0d..
:
∀ x0 .
IrreflexiveSymmetricReln
x0
⟶
struct_r
x0
(proof)
Theorem
49c4f..
:
∀ x0 x1 .
IrreflexiveSymmetricReln
x0
⟶
IrreflexiveSymmetricReln
x1
⟶
IrreflexiveSymmetricReln
(
BinReln_product
x0
x1
)
(proof)
Theorem
709ef..
MetaCat_struct_r_graph_product_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
IrreflexiveSymmetricReln
BinRelnHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Definition
PER
struct_r_per
:=
λ x0 .
and
(
struct_r
x0
)
(
unpack_r_o
x0
(
λ x1 .
λ x2 :
ι →
ι → ο
.
and
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x3
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x5
⟶
x2
x3
x5
)
)
)
Known
a3466..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x4
⟶
x1
x2
x4
)
⟶
PER
(
pack_r
x0
x1
)
Known
0bd5c..
:
∀ x0 .
PER
x0
⟶
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
x3
x4
x5
⟶
x3
x5
x4
)
⟶
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
∀ x6 .
x6
∈
x2
⟶
x3
x4
x5
⟶
x3
x5
x6
⟶
x3
x4
x6
)
⟶
x1
(
pack_r
x2
x3
)
)
⟶
x1
x0
Theorem
1b5dd..
:
∀ x0 .
PER
x0
⟶
struct_r
x0
(proof)
Theorem
a9f70..
:
∀ x0 x1 .
PER
x0
⟶
PER
x1
⟶
PER
(
BinReln_product
x0
x1
)
(proof)
Theorem
b370d..
MetaCat_struct_r_per_product_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
PER
BinRelnHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
310d5..
:
∀ x0 x1 .
PER
x0
⟶
PER
x1
⟶
PER
(
BinReln_exp
x0
x1
)
(proof)
Theorem
97ee8..
MetaCat_struct_r_per_product_exponent
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι → ι
.
(
∀ x12 : ο .
(
∀ x13 :
ι →
ι →
ι →
ι → ι
.
MetaCat_exp_constr_p
PER
BinRelnHom
struct_id
struct_comp
x1
x3
x5
x7
x9
x11
x13
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Definition
EquivReln
struct_r_equivreln
:=
λ x0 .
and
(
struct_r
x0
)
(
unpack_r_o
x0
(
λ x1 .
λ x2 :
ι →
ι → ο
.
and
(
and
(
∀ x3 .
x3
∈
x1
⟶
x2
x3
x3
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x3
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x5
⟶
x2
x3
x5
)
)
)
Known
517b3..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
x1
x2
x2
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x4
⟶
x1
x2
x4
)
⟶
EquivReln
(
pack_r
x0
x1
)
Known
909a7..
:
∀ x0 .
EquivReln
x0
⟶
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 .
x4
∈
x2
⟶
x3
x4
x4
)
⟶
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
x3
x4
x5
⟶
x3
x5
x4
)
⟶
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
∀ x6 .
x6
∈
x2
⟶
x3
x4
x5
⟶
x3
x5
x6
⟶
x3
x4
x6
)
⟶
x1
(
pack_r
x2
x3
)
)
⟶
x1
x0
Theorem
2effc..
:
∀ x0 .
EquivReln
x0
⟶
struct_r
x0
(proof)
Theorem
7da0d..
:
∀ x0 x1 .
EquivReln
x0
⟶
EquivReln
x1
⟶
EquivReln
(
BinReln_product
x0
x1
)
(proof)
Theorem
4d1df..
MetaCat_struct_r_equivreln_product_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
EquivReln
BinRelnHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Definition
IrreflexiveTransitiveReln
struct_r_partialord
:=
λ x0 .
and
(
struct_r
x0
)
(
unpack_r_o
x0
(
λ x1 .
λ x2 :
ι →
ι → ο
.
and
(
∀ x3 .
x3
∈
x1
⟶
not
(
x2
x3
x3
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x5
⟶
x2
x3
x5
)
)
)
Known
b25e7..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
not
(
x1
x2
x2
)
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x4
⟶
x1
x2
x4
)
⟶
IrreflexiveTransitiveReln
(
pack_r
x0
x1
)
Known
af4aa..
:
∀ x0 .
IrreflexiveTransitiveReln
x0
⟶
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 .
x4
∈
x2
⟶
not
(
x3
x4
x4
)
)
⟶
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
∀ x6 .
x6
∈
x2
⟶
x3
x4
x5
⟶
x3
x5
x6
⟶
x3
x4
x6
)
⟶
x1
(
pack_r
x2
x3
)
)
⟶
x1
x0
Theorem
294e6..
:
∀ x0 .
IrreflexiveTransitiveReln
x0
⟶
struct_r
x0
(proof)
Theorem
e27aa..
:
∀ x0 x1 .
IrreflexiveTransitiveReln
x0
⟶
IrreflexiveTransitiveReln
x1
⟶
IrreflexiveTransitiveReln
(
BinReln_product
x0
x1
)
(proof)
Theorem
42715..
MetaCat_struct_r_partialord_product_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
IrreflexiveTransitiveReln
BinRelnHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)