vout |
---|
PrCit../c0872.. 4.79 barsTMGMU../ecfe6.. ownership of 5e841.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMGAs../75c4a.. ownership of 644f0.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMZPR../68ca6.. ownership of cebd4.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMH7q../29a06.. ownership of 50ba4.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMWYA../00d0d.. ownership of 3c32a.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMLtF../eca82.. ownership of 6261d.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMQfn../ebb95.. ownership of 1fc45.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMQkA../59bad.. ownership of 6a774.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMURU../f9574.. ownership of ec6bb.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMP6u../0117e.. ownership of 88e43.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMajN../4ee1e.. ownership of 1758f.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMSMz../f9c6d.. ownership of ccf9d.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMahn../453a6.. ownership of bf9c0.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMLFY../3275b.. ownership of 06a21.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMV5t../da88f.. ownership of b36ff.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMVbw../123c0.. ownership of cbf7a.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMKSK../75480.. ownership of 79bd2.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMQtt../21528.. ownership of eca07.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMWL5../f0c73.. ownership of 7ee90.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMc6k../0a5ac.. ownership of d12ef.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMLRz../ed466.. ownership of cd18c.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMP1t../856d6.. ownership of 2adc5.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMSvQ../92ad3.. ownership of e6da2.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMX6R../dd2bb.. ownership of c5d7e.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMFZf../719c2.. ownership of 984c8.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMFgo../40f17.. ownership of 7d721.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMMaS../c10dc.. ownership of 084ef.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMJaY../c8e53.. ownership of 421f4.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMazp../0b27c.. ownership of f67f7.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMSmr../b2070.. ownership of 6cd5d.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMEvt../fad89.. ownership of 8ca1e.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMHpR../1d7f3.. ownership of bc925.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMMqo../c9df7.. ownership of 74326.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMdbF../09b32.. ownership of 6256d.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMXQ8../af784.. ownership of 9efa7.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMUxg../6a7f9.. ownership of d3769.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMZgn../73a57.. ownership of 24b48.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMPzy../01dc1.. ownership of 7c052.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMXDk../9f504.. ownership of 1fbf0.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMGNf../67a9d.. ownership of 52e73.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMVap../278b8.. ownership of 1565e.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMbqR../a1b91.. ownership of ec854.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMJ3J../de75c.. ownership of 6fc5a.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMZk3../d36e2.. ownership of b7ecf.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMY2N../e42ef.. ownership of 8d9d9.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMNBx../d49b7.. ownership of 0a401.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMHUn../15b38.. ownership of 09f2a.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMRHf../3cbd8.. ownership of 1f476.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMPrX../768a6.. ownership of d140d.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMVmB../6a772.. ownership of 01a03.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMSS2../38e2a.. ownership of 04f57.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMdeE../ab897.. ownership of bd775.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMHwc../945c7.. ownership of 75f77.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMSWy../9c2ab.. ownership of fba79.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMX9b../05255.. ownership of 19e0f.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMH9j../294bf.. ownership of b4405.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMYJw../fad29.. ownership of 2e3d8.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMF1n../1b252.. ownership of 177f1.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMRxe../727a9.. ownership of 368c2.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMQRD../1eec3.. ownership of 7e1bd.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMYGZ../d8791.. ownership of 09d70.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMcX3../550ef.. ownership of b67f1.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMScn../53cc6.. ownership of 5d098.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMRVF../f8676.. ownership of 8a21f.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMF5S../7272a.. ownership of ada03.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMZFY../bd127.. ownership of 70c71.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMPWw../dbac2.. ownership of 04353.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMU44../62eb0.. ownership of 12ee6.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0PUXoM../f2b6d.. doc published by Pr4zB..Param atleastpatleastp : ι → ι → οParam u1 : ιParam SingSing : ι → ιKnown atleastp_traatleastp_tra : ∀ x0 x1 x2 . atleastp x0 x1 ⟶ atleastp x1 x2 ⟶ atleastp x0 x2Param equipequip : ι → ι → οKnown equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1 ⟶ atleastp x0 x1Known equip_symequip_sym : ∀ x0 x1 . equip x0 x1 ⟶ equip x1 x0Known 5169f..equip_Sing_1 : ∀ x0 . equip (Sing x0) u1Definition SubqSubq := λ x0 x1 . ∀ x2 . x2 ∈ x0 ⟶ x2 ∈ x1Known Subq_atleastpSubq_atleastp : ∀ x0 x1 . x0 ⊆ x1 ⟶ atleastp x0 x1Known SingESingE : ∀ x0 x1 . x1 ∈ Sing x0 ⟶ x1 = x0Theorem 04353.. : ∀ x0 x1 . x1 ∈ x0 ⟶ atleastp u1 x0 (proof)Param ordsuccordsucc : ι → ιDefinition u2 := ordsucc u1Param setminussetminus : ι → ι → ιDefinition FalseFalse := ∀ x0 : ο . x0Definition notnot := λ x0 : ο . x0 ⟶ FalseDefinition nInnIn := λ x0 x1 . not (x0 ∈ x1)Param binunionbinunion : ι → ι → ιKnown eb0c4..binunion_remove1_eq : ∀ x0 x1 . x1 ∈ x0 ⟶ x0 = binunion (setminus x0 (Sing x1)) (Sing x1)Known 1dc5a.. : ∀ x0 x1 x2 . nIn x2 x1 ⟶ atleastp x0 x1 ⟶ atleastp (ordsucc x0) (binunion x1 (Sing x2))Known setminus_nIn_I2setminus_nIn_I2 : ∀ x0 x1 x2 . x2 ∈ x1 ⟶ nIn x2 (setminus x0 x1)Known SingISingI : ∀ x0 . x0 ∈ Sing x0Known setminusIsetminusI : ∀ x0 x1 x2 . x2 ∈ x0 ⟶ nIn x2 x1 ⟶ x2 ∈ setminus x0 x1Theorem ada03.. : ∀ x0 x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x3 : ο . x3) ⟶ atleastp u2 x0 (proof)Definition u3 := ordsucc u2Theorem 5d098.. : ∀ x0 x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x4 : ο . x4) ⟶ (x1 = x3 ⟶ ∀ x4 : ο . x4) ⟶ (x2 = x3 ⟶ ∀ x4 : ο . x4) ⟶ atleastp u3 x0 (proof)Definition u4 := ordsucc u3Theorem 09d70.. : ∀ x0 x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x5 : ο . x5) ⟶ (x1 = x3 ⟶ ∀ x5 : ο . x5) ⟶ (x2 = x3 ⟶ ∀ x5 : ο . x5) ⟶ (x1 = x4 ⟶ ∀ x5 : ο . x5) ⟶ (x2 = x4 ⟶ ∀ x5 : ο . x5) ⟶ (x3 = x4 ⟶ ∀ x5 : ο . x5) ⟶ atleastp u4 x0 (proof)Definition u5 := ordsucc u4Theorem 368c2.. : ∀ x0 x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x6 : ο . x6) ⟶ (x1 = x3 ⟶ ∀ x6 : ο . x6) ⟶ (x2 = x3 ⟶ ∀ x6 : ο . x6) ⟶ (x1 = x4 ⟶ ∀ x6 : ο . x6) ⟶ (x2 = x4 ⟶ ∀ x6 : ο . x6) ⟶ (x3 = x4 ⟶ ∀ x6 : ο . x6) ⟶ (x1 = x5 ⟶ ∀ x6 : ο . x6) ⟶ (x2 = x5 ⟶ ∀ x6 : ο . x6) ⟶ (x3 = x5 ⟶ ∀ x6 : ο . x6) ⟶ (x4 = x5 ⟶ ∀ x6 : ο . x6) ⟶ atleastp u5 x0 (proof)Definition u6 := ordsucc u5Theorem 2e3d8.. : ∀ x0 x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x7 : ο . x7) ⟶ (x1 = x3 ⟶ ∀ x7 : ο . x7) ⟶ (x2 = x3 ⟶ ∀ x7 : ο . x7) ⟶ (x1 = x4 ⟶ ∀ x7 : ο . x7) ⟶ (x2 = x4 ⟶ ∀ x7 : ο . x7) ⟶ (x3 = x4 ⟶ ∀ x7 : ο . x7) ⟶ (x1 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x2 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x3 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x4 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x1 = x6 ⟶ ∀ x7 : ο . x7) ⟶ (x2 = x6 ⟶ ∀ x7 : ο . x7) ⟶ (x3 = x6 ⟶ ∀ x7 : ο . x7) ⟶ (x4 = x6 ⟶ ∀ x7 : ο . x7) ⟶ (x5 = x6 ⟶ ∀ x7 : ο . x7) ⟶ atleastp u6 x0 (proof)Definition u7 := ordsucc u6Theorem 19e0f.. : ∀ x0 x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x8 : ο . x8) ⟶ (x1 = x3 ⟶ ∀ x8 : ο . x8) ⟶ (x2 = x3 ⟶ ∀ x8 : ο . x8) ⟶ (x1 = x4 ⟶ ∀ x8 : ο . x8) ⟶ (x2 = x4 ⟶ ∀ x8 : ο . x8) ⟶ (x3 = x4 ⟶ ∀ x8 : ο . x8) ⟶ (x1 = x5 ⟶ ∀ x8 : ο . x8) ⟶ (x2 = x5 ⟶ ∀ x8 : ο . x8) ⟶ (x3 = x5 ⟶ ∀ x8 : ο . x8) ⟶ (x4 = x5 ⟶ ∀ x8 : ο . x8) ⟶ (x1 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x2 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x3 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x4 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x5 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x1 = x7 ⟶ ∀ x8 : ο . x8) ⟶ (x2 = x7 ⟶ ∀ x8 : ο . x8) ⟶ (x3 = x7 ⟶ ∀ x8 : ο . x8) ⟶ (x4 = x7 ⟶ ∀ x8 : ο . x8) ⟶ (x5 = x7 ⟶ ∀ x8 : ο . x8) ⟶ (x6 = x7 ⟶ ∀ x8 : ο . x8) ⟶ atleastp u7 x0 (proof)Definition u8 := ordsucc u7Theorem 75f77.. : ∀ x0 x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x9 : ο . x9) ⟶ (x1 = x3 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x3 ⟶ ∀ x9 : ο . x9) ⟶ (x1 = x4 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x4 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x4 ⟶ ∀ x9 : ο . x9) ⟶ (x1 = x5 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x5 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x5 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x5 ⟶ ∀ x9 : ο . x9) ⟶ (x1 = x6 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x6 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x6 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x6 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x6 ⟶ ∀ x9 : ο . x9) ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x1 = x8 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x8 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x8 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x8 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x8 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x8 ⟶ ∀ x9 : ο . x9) ⟶ (x7 = x8 ⟶ ∀ x9 : ο . x9) ⟶ atleastp u8 x0 (proof)Definition u9 := ordsucc u8Theorem 04f57.. : ∀ x0 x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x10 : ο . x10) ⟶ (x1 = x3 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x3 ⟶ ∀ x10 : ο . x10) ⟶ (x1 = x4 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x4 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x4 ⟶ ∀ x10 : ο . x10) ⟶ (x1 = x5 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x5 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x5 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x5 ⟶ ∀ x10 : ο . x10) ⟶ (x1 = x6 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x6 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x6 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x6 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x6 ⟶ ∀ x10 : ο . x10) ⟶ (x1 = x7 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x7 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x7 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x7 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x7 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x7 ⟶ ∀ x10 : ο . x10) ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x1 = x9 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x9 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x9 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x9 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x9 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x9 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x9 ⟶ ∀ x10 : ο . x10) ⟶ (x8 = x9 ⟶ ∀ x10 : ο . x10) ⟶ atleastp u9 x0 (proof)Definition u10 := ordsucc u9Theorem d140d.. : ∀ x0 x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x11 : ο . x11) ⟶ (x1 = x3 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x3 ⟶ ∀ x11 : ο . x11) ⟶ (x1 = x4 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x4 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x4 ⟶ ∀ x11 : ο . x11) ⟶ (x1 = x5 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x5 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x5 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x5 ⟶ ∀ x11 : ο . x11) ⟶ (x1 = x6 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x6 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x6 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x6 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x6 ⟶ ∀ x11 : ο . x11) ⟶ (x1 = x7 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x7 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x7 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x7 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x7 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x7 ⟶ ∀ x11 : ο . x11) ⟶ (x1 = x8 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x8 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x8 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x8 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x8 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x8 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x8 ⟶ ∀ x11 : ο . x11) ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x1 = x10 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x10 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x10 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x10 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x10 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x10 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x10 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x10 ⟶ ∀ x11 : ο . x11) ⟶ (x9 = x10 ⟶ ∀ x11 : ο . x11) ⟶ atleastp u10 x0 (proof)Definition u11 := ordsucc u10Theorem 09f2a.. : ∀ x0 x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x12 : ο . x12) ⟶ (x1 = x3 ⟶ ∀ x12 : ο . x12) ⟶ (x2 = x3 ⟶ ∀ x12 : ο . x12) ⟶ (x1 = x4 ⟶ ∀ x12 : ο . x12) ⟶ (x2 = x4 ⟶ ∀ x12 : ο . x12) ⟶ (x3 = x4 ⟶ ∀ x12 : ο . x12) ⟶ (x1 = x5 ⟶ ∀ x12 : ο . x12) ⟶ (x2 = x5 ⟶ ∀ x12 : ο . x12) ⟶ (x3 = x5 ⟶ ∀ x12 : ο . x12) ⟶ (x4 = x5 ⟶ ∀ x12 : ο . x12) ⟶ (x1 = x6 ⟶ ∀ x12 : ο . x12) ⟶ (x2 = x6 ⟶ ∀ x12 : ο . x12) ⟶ (x3 = x6 ⟶ ∀ x12 : ο . x12) ⟶ (x4 = x6 ⟶ ∀ x12 : ο . x12) ⟶ (x5 = x6 ⟶ ∀ x12 : ο . x12) ⟶ (x1 = x7 ⟶ ∀ x12 : ο . x12) ⟶ (x2 = x7 ⟶ ∀ x12 : ο . x12) ⟶ (x3 = x7 ⟶ ∀ x12 : ο . x12) ⟶ (x4 = x7 ⟶ ∀ x12 : ο . x12) ⟶ (x5 = x7 ⟶ ∀ x12 : ο . x12) ⟶ (x6 = x7 ⟶ ∀ x12 : ο . x12) ⟶ (x1 = x8 ⟶ ∀ x12 : ο . x12) ⟶ (x2 = x8 ⟶ ∀ x12 : ο . x12) ⟶ (x3 = x8 ⟶ ∀ x12 : ο . x12) ⟶ (x4 = x8 ⟶ ∀ x12 : ο . x12) ⟶ (x5 = x8 ⟶ ∀ x12 : ο . x12) ⟶ (x6 = x8 ⟶ ∀ x12 : ο . x12) ⟶ (x7 = x8 ⟶ ∀ x12 : ο . x12) ⟶ (x1 = x9 ⟶ ∀ x12 : ο . x12) ⟶ (x2 = x9 ⟶ ∀ x12 : ο . x12) ⟶ (x3 = x9 ⟶ ∀ x12 : ο . x12) ⟶ (x4 = x9 ⟶ ∀ x12 : ο . x12) ⟶ (x5 = x9 ⟶ ∀ x12 : ο . x12) ⟶ (x6 = x9 ⟶ ∀ x12 : ο . x12) ⟶ (x7 = x9 ⟶ ∀ x12 : ο . x12) ⟶ (x8 = x9 ⟶ ∀ x12 : ο . x12) ⟶ (x1 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x2 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x3 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x4 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x5 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x6 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x7 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x8 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x9 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x1 = x11 ⟶ ∀ x12 : ο . x12) ⟶ (x2 = x11 ⟶ ∀ x12 : ο . x12) ⟶ (x3 = x11 ⟶ ∀ x12 : ο . x12) ⟶ (x4 = x11 ⟶ ∀ x12 : ο . x12) ⟶ (x5 = x11 ⟶ ∀ x12 : ο . x12) ⟶ (x6 = x11 ⟶ ∀ x12 : ο . x12) ⟶ (x7 = x11 ⟶ ∀ x12 : ο . x12) ⟶ (x8 = x11 ⟶ ∀ x12 : ο . x12) ⟶ (x9 = x11 ⟶ ∀ x12 : ο . x12) ⟶ (x10 = x11 ⟶ ∀ x12 : ο . x12) ⟶ atleastp u11 x0 (proof)Definition u12 := ordsucc u11Theorem 8d9d9.. : ∀ x0 x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x13 : ο . x13) ⟶ (x1 = x3 ⟶ ∀ x13 : ο . x13) ⟶ (x2 = x3 ⟶ ∀ x13 : ο . x13) ⟶ (x1 = x4 ⟶ ∀ x13 : ο . x13) ⟶ (x2 = x4 ⟶ ∀ x13 : ο . x13) ⟶ (x3 = x4 ⟶ ∀ x13 : ο . x13) ⟶ (x1 = x5 ⟶ ∀ x13 : ο . x13) ⟶ (x2 = x5 ⟶ ∀ x13 : ο . x13) ⟶ (x3 = x5 ⟶ ∀ x13 : ο . x13) ⟶ (x4 = x5 ⟶ ∀ x13 : ο . x13) ⟶ (x1 = x6 ⟶ ∀ x13 : ο . x13) ⟶ (x2 = x6 ⟶ ∀ x13 : ο . x13) ⟶ (x3 = x6 ⟶ ∀ x13 : ο . x13) ⟶ (x4 = x6 ⟶ ∀ x13 : ο . x13) ⟶ (x5 = x6 ⟶ ∀ x13 : ο . x13) ⟶ (x1 = x7 ⟶ ∀ x13 : ο . x13) ⟶ (x2 = x7 ⟶ ∀ x13 : ο . x13) ⟶ (x3 = x7 ⟶ ∀ x13 : ο . x13) ⟶ (x4 = x7 ⟶ ∀ x13 : ο . x13) ⟶ (x5 = x7 ⟶ ∀ x13 : ο . x13) ⟶ (x6 = x7 ⟶ ∀ x13 : ο . x13) ⟶ (x1 = x8 ⟶ ∀ x13 : ο . x13) ⟶ (x2 = x8 ⟶ ∀ x13 : ο . x13) ⟶ (x3 = x8 ⟶ ∀ x13 : ο . x13) ⟶ (x4 = x8 ⟶ ∀ x13 : ο . x13) ⟶ (x5 = x8 ⟶ ∀ x13 : ο . x13) ⟶ (x6 = x8 ⟶ ∀ x13 : ο . x13) ⟶ (x7 = x8 ⟶ ∀ x13 : ο . x13) ⟶ (x1 = x9 ⟶ ∀ x13 : ο . x13) ⟶ (x2 = x9 ⟶ ∀ x13 : ο . x13) ⟶ (x3 = x9 ⟶ ∀ x13 : ο . x13) ⟶ (x4 = x9 ⟶ ∀ x13 : ο . x13) ⟶ (x5 = x9 ⟶ ∀ x13 : ο . x13) ⟶ (x6 = x9 ⟶ ∀ x13 : ο . x13) ⟶ (x7 = x9 ⟶ ∀ x13 : ο . x13) ⟶ (x8 = x9 ⟶ ∀ x13 : ο . x13) ⟶ (x1 = x10 ⟶ ∀ x13 : ο . x13) ⟶ (x2 = x10 ⟶ ∀ x13 : ο . x13) ⟶ (x3 = x10 ⟶ ∀ x13 : ο . x13) ⟶ (x4 = x10 ⟶ ∀ x13 : ο . x13) ⟶ (x5 = x10 ⟶ ∀ x13 : ο . x13) ⟶ (x6 = x10 ⟶ ∀ x13 : ο . x13) ⟶ (x7 = x10 ⟶ ∀ x13 : ο . x13) ⟶ (x8 = x10 ⟶ ∀ x13 : ο . x13) ⟶ (x9 = x10 ⟶ ∀ x13 : ο . x13) ⟶ (x1 = x11 ⟶ ∀ x13 : ο . x13) ⟶ (x2 = x11 ⟶ ∀ x13 : ο . x13) ⟶ (x3 = x11 ⟶ ∀ x13 : ο . x13) ⟶ (x4 = x11 ⟶ ∀ x13 : ο . x13) ⟶ (x5 = x11 ⟶ ∀ x13 : ο . x13) ⟶ (x6 = x11 ⟶ ∀ x13 : ο . x13) ⟶ (x7 = x11 ⟶ ∀ x13 : ο . x13) ⟶ (x8 = x11 ⟶ ∀ x13 : ο . x13) ⟶ (x9 = x11 ⟶ ∀ x13 : ο . x13) ⟶ (x10 = x11 ⟶ ∀ x13 : ο . x13) ⟶ (x1 = x12 ⟶ ∀ x13 : ο . x13) ⟶ (x2 = x12 ⟶ ∀ x13 : ο . x13) ⟶ (x3 = x12 ⟶ ∀ x13 : ο . x13) ⟶ (x4 = x12 ⟶ ∀ x13 : ο . x13) ⟶ (x5 = x12 ⟶ ∀ x13 : ο . x13) ⟶ (x6 = x12 ⟶ ∀ x13 : ο . x13) ⟶ (x7 = x12 ⟶ ∀ x13 : ο . x13) ⟶ (x8 = x12 ⟶ ∀ x13 : ο . x13) ⟶ (x9 = x12 ⟶ ∀ x13 : ο . x13) ⟶ (x10 = x12 ⟶ ∀ x13 : ο . x13) ⟶ (x11 = x12 ⟶ ∀ x13 : ο . x13) ⟶ atleastp u12 x0 (proof)Definition u13 := ordsucc u12Theorem 6fc5a.. : ∀ x0 x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x14 : ο . x14) ⟶ (x1 = x3 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x3 ⟶ ∀ x14 : ο . x14) ⟶ (x1 = x4 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x4 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x4 ⟶ ∀ x14 : ο . x14) ⟶ (x1 = x5 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x5 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x5 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x5 ⟶ ∀ x14 : ο . x14) ⟶ (x1 = x6 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x6 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x6 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x6 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x6 ⟶ ∀ x14 : ο . x14) ⟶ (x1 = x7 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x7 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x7 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x7 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x7 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x7 ⟶ ∀ x14 : ο . x14) ⟶ (x1 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x8 ⟶ ∀ x14 : ο . x14) ⟶ (x1 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x8 = x9 ⟶ ∀ x14 : ο . x14) ⟶ (x1 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x8 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x9 = x10 ⟶ ∀ x14 : ο . x14) ⟶ (x1 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x8 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x9 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x10 = x11 ⟶ ∀ x14 : ο . x14) ⟶ (x1 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x8 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x9 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x10 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x11 = x12 ⟶ ∀ x14 : ο . x14) ⟶ (x1 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x2 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x3 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x4 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x5 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x6 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x7 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x8 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x9 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x10 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x11 = x13 ⟶ ∀ x14 : ο . x14) ⟶ (x12 = x13 ⟶ ∀ x14 : ο . x14) ⟶ atleastp u13 x0 (proof)Definition u14 := ordsucc u13Theorem 1565e.. : ∀ x0 x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x15 : ο . x15) ⟶ (x1 = x3 ⟶ ∀ x15 : ο . x15) ⟶ (x2 = x3 ⟶ ∀ x15 : ο . x15) ⟶ (x1 = x4 ⟶ ∀ x15 : ο . x15) ⟶ (x2 = x4 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x4 ⟶ ∀ x15 : ο . x15) ⟶ (x1 = x5 ⟶ ∀ x15 : ο . x15) ⟶ (x2 = x5 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x5 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x5 ⟶ ∀ x15 : ο . x15) ⟶ (x1 = x6 ⟶ ∀ x15 : ο . x15) ⟶ (x2 = x6 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x6 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x6 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x6 ⟶ ∀ x15 : ο . x15) ⟶ (x1 = x7 ⟶ ∀ x15 : ο . x15) ⟶ (x2 = x7 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x7 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x7 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x7 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x7 ⟶ ∀ x15 : ο . x15) ⟶ (x1 = x8 ⟶ ∀ x15 : ο . x15) ⟶ (x2 = x8 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x8 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x8 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x8 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x8 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x8 ⟶ ∀ x15 : ο . x15) ⟶ (x1 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x2 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x9 ⟶ ∀ x15 : ο . x15) ⟶ (x1 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x2 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x9 = x10 ⟶ ∀ x15 : ο . x15) ⟶ (x1 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x2 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x9 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x10 = x11 ⟶ ∀ x15 : ο . x15) ⟶ (x1 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x2 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x9 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x10 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x11 = x12 ⟶ ∀ x15 : ο . x15) ⟶ (x1 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x2 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x9 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x10 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x11 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x12 = x13 ⟶ ∀ x15 : ο . x15) ⟶ (x1 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x2 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x3 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x4 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x5 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x6 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x7 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x8 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x9 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x10 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x11 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x12 = x14 ⟶ ∀ x15 : ο . x15) ⟶ (x13 = x14 ⟶ ∀ x15 : ο . x15) ⟶ atleastp u14 x0 (proof)Definition u15 := ordsucc u14Theorem 1fbf0.. : ∀ x0 x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x16 : ο . x16) ⟶ (x1 = x3 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x3 ⟶ ∀ x16 : ο . x16) ⟶ (x1 = x4 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x4 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x4 ⟶ ∀ x16 : ο . x16) ⟶ (x1 = x5 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x5 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x5 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x5 ⟶ ∀ x16 : ο . x16) ⟶ (x1 = x6 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x6 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x6 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x6 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x6 ⟶ ∀ x16 : ο . x16) ⟶ (x1 = x7 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x7 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x7 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x7 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x7 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x7 ⟶ ∀ x16 : ο . x16) ⟶ (x1 = x8 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x8 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x8 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x8 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x8 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x8 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x8 ⟶ ∀ x16 : ο . x16) ⟶ (x1 = x9 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x9 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x9 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x9 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x9 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x9 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x9 ⟶ ∀ x16 : ο . x16) ⟶ (x8 = x9 ⟶ ∀ x16 : ο . x16) ⟶ (x1 = x10 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x10 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x10 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x10 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x10 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x10 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x10 ⟶ ∀ x16 : ο . x16) ⟶ (x8 = x10 ⟶ ∀ x16 : ο . x16) ⟶ (x9 = x10 ⟶ ∀ x16 : ο . x16) ⟶ (x1 = x11 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x11 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x11 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x11 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x11 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x11 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x11 ⟶ ∀ x16 : ο . x16) ⟶ (x8 = x11 ⟶ ∀ x16 : ο . x16) ⟶ (x9 = x11 ⟶ ∀ x16 : ο . x16) ⟶ (x10 = x11 ⟶ ∀ x16 : ο . x16) ⟶ (x1 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x8 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x9 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x10 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x11 = x12 ⟶ ∀ x16 : ο . x16) ⟶ (x1 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x8 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x9 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x10 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x11 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x12 = x13 ⟶ ∀ x16 : ο . x16) ⟶ (x1 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x8 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x9 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x10 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x11 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x12 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x13 = x14 ⟶ ∀ x16 : ο . x16) ⟶ (x1 = x15 ⟶ ∀ x16 : ο . x16) ⟶ (x2 = x15 ⟶ ∀ x16 : ο . x16) ⟶ (x3 = x15 ⟶ ∀ x16 : ο . x16) ⟶ (x4 = x15 ⟶ ∀ x16 : ο . x16) ⟶ (x5 = x15 ⟶ ∀ x16 : ο . x16) ⟶ (x6 = x15 ⟶ ∀ x16 : ο . x16) ⟶ (x7 = x15 ⟶ ∀ x16 : ο . x16) ⟶ (x8 = x15 ⟶ ∀ x16 : ο . x16) ⟶ (x9 = x15 ⟶ ∀ x16 : ο . x16) ⟶ (x10 = x15 ⟶ ∀ x16 : ο . x16) ⟶ (x11 = x15 ⟶ ∀ x16 : ο . x16) ⟶ (x12 = x15 ⟶ ∀ x16 : ο . x16) ⟶ (x13 = x15 ⟶ ∀ x16 : ο . x16) ⟶ (x14 = x15 ⟶ ∀ x16 : ο . x16) ⟶ atleastp u15 x0 (proof)Definition u16 := ordsucc u15Theorem 24b48.. : ∀ x0 x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x17 : ο . x17) ⟶ (x1 = x3 ⟶ ∀ x17 : ο . x17) ⟶ (x2 = x3 ⟶ ∀ x17 : ο . x17) ⟶ (x1 = x4 ⟶ ∀ x17 : ο . x17) ⟶ (x2 = x4 ⟶ ∀ x17 : ο . x17) ⟶ (x3 = x4 ⟶ ∀ x17 : ο . x17) ⟶ (x1 = x5 ⟶ ∀ x17 : ο . x17) ⟶ (x2 = x5 ⟶ ∀ x17 : ο . x17) ⟶ (x3 = x5 ⟶ ∀ x17 : ο . x17) ⟶ (x4 = x5 ⟶ ∀ x17 : ο . x17) ⟶ (x1 = x6 ⟶ ∀ x17 : ο . x17) ⟶ (x2 = x6 ⟶ ∀ x17 : ο . x17) ⟶ (x3 = x6 ⟶ ∀ x17 : ο . x17) ⟶ (x4 = x6 ⟶ ∀ x17 : ο . x17) ⟶ (x5 = x6 ⟶ ∀ x17 : ο . x17) ⟶ (x1 = x7 ⟶ ∀ x17 : ο . x17) ⟶ (x2 = x7 ⟶ ∀ x17 : ο . x17) ⟶ (x3 = x7 ⟶ ∀ x17 : ο . x17) ⟶ (x4 = x7 ⟶ ∀ x17 : ο . x17) ⟶ (x5 = x7 ⟶ ∀ x17 : ο . x17) ⟶ (x6 = x7 ⟶ ∀ x17 : ο . x17) ⟶ (x1 = x8 ⟶ ∀ x17 : ο . x17) ⟶ (x2 = x8 ⟶ ∀ x17 : ο . x17) ⟶ (x3 = x8 ⟶ ∀ x17 : ο . x17) ⟶ (x4 = x8 ⟶ ∀ x17 : ο . x17) ⟶ (x5 = x8 ⟶ ∀ x17 : ο . x17) ⟶ (x6 = x8 ⟶ ∀ x17 : ο . x17) ⟶ (x7 = x8 ⟶ ∀ x17 : ο . x17) ⟶ (x1 = x9 ⟶ ∀ x17 : ο . x17) ⟶ (x2 = x9 ⟶ ∀ x17 : ο . x17) ⟶ (x3 = x9 ⟶ ∀ x17 : ο . x17) ⟶ (x4 = x9 ⟶ ∀ x17 : ο . x17) ⟶ (x5 = x9 ⟶ ∀ x17 : ο . x17) ⟶ (x6 = x9 ⟶ ∀ x17 : ο . x17) ⟶ (x7 = x9 ⟶ ∀ x17 : ο . x17) ⟶ (x8 = x9 ⟶ ∀ x17 : ο . x17) ⟶ (x1 = x10 ⟶ ∀ x17 : ο . x17) ⟶ (x2 = x10 ⟶ ∀ x17 : ο . x17) ⟶ (x3 = x10 ⟶ ∀ x17 : ο . x17) ⟶ (x4 = x10 ⟶ ∀ x17 : ο . x17) ⟶ (x5 = x10 ⟶ ∀ x17 : ο . x17) ⟶ (x6 = x10 ⟶ ∀ x17 : ο . x17) ⟶ (x7 = x10 ⟶ ∀ x17 : ο . x17) ⟶ (x8 = x10 ⟶ ∀ x17 : ο . x17) ⟶ (x9 = x10 ⟶ ∀ x17 : ο . x17) ⟶ (x1 = x11 ⟶ ∀ x17 : ο . x17) ⟶ (x2 = x11 ⟶ ∀ x17 : ο . x17) ⟶ (x3 = x11 ⟶ ∀ x17 : ο . x17) ⟶ (x4 = x11 ⟶ ∀ x17 : ο . x17) ⟶ (x5 = x11 ⟶ ∀ x17 : ο . x17) ⟶ (x6 = x11 ⟶ ∀ x17 : ο . x17) ⟶ (x7 = x11 ⟶ ∀ x17 : ο . x17) ⟶ (x8 = x11 ⟶ ∀ x17 : ο . x17) ⟶ (x9 = x11 ⟶ ∀ x17 : ο . x17) ⟶ (x10 = x11 ⟶ ∀ x17 : ο . x17) ⟶ (x1 = x12 ⟶ ∀ x17 : ο . x17) ⟶ (x2 = x12 ⟶ ∀ x17 : ο . x17) ⟶ (x3 = x12 ⟶ ∀ x17 : ο . x17) ⟶ (x4 = x12 ⟶ ∀ x17 : ο . x17) ⟶ (x5 = x12 ⟶ ∀ x17 : ο . x17) ⟶ (x6 = x12 ⟶ ∀ x17 : ο . x17) ⟶ (x7 = x12 ⟶ ∀ x17 : ο . x17) ⟶ (x8 = x12 ⟶ ∀ x17 : ο . x17) ⟶ (x9 = x12 ⟶ ∀ x17 : ο . x17) ⟶ (x10 = x12 ⟶ ∀ x17 : ο . x17) ⟶ (x11 = x12 ⟶ ∀ x17 : ο . x17) ⟶ (x1 = x13 ⟶ ∀ x17 : ο . x17) ⟶ (x2 = x13 ⟶ ∀ x17 : ο . x17) ⟶ (x3 = x13 ⟶ ∀ x17 : ο . x17) ⟶ (x4 = x13 ⟶ ∀ x17 : ο . x17) ⟶ (x5 = x13 ⟶ ∀ x17 : ο . x17) ⟶ (x6 = x13 ⟶ ∀ x17 : ο . x17) ⟶ (x7 = x13 ⟶ ∀ x17 : ο . x17) ⟶ (x8 = x13 ⟶ ∀ x17 : ο . x17) ⟶ (x9 = x13 ⟶ ∀ x17 : ο . x17) ⟶ (x10 = x13 ⟶ ∀ x17 : ο . x17) ⟶ (x11 = x13 ⟶ ∀ x17 : ο . x17) ⟶ (x12 = x13 ⟶ ∀ x17 : ο . x17) ⟶ (x1 = x14 ⟶ ∀ x17 : ο . x17) ⟶ (x2 = x14 ⟶ ∀ x17 : ο . x17) ⟶ (x3 = x14 ⟶ ∀ x17 : ο . x17) ⟶ (x4 = x14 ⟶ ∀ x17 : ο . x17) ⟶ (x5 = x14 ⟶ ∀ x17 : ο . x17) ⟶ (x6 = x14 ⟶ ∀ x17 : ο . x17) ⟶ (x7 = x14 ⟶ ∀ x17 : ο . x17) ⟶ (x8 = x14 ⟶ ∀ x17 : ο . x17) ⟶ (x9 = x14 ⟶ ∀ x17 : ο . x17) ⟶ (x10 = x14 ⟶ ∀ x17 : ο . x17) ⟶ (x11 = x14 ⟶ ∀ x17 : ο . x17) ⟶ (x12 = x14 ⟶ ∀ x17 : ο . x17) ⟶ (x13 = x14 ⟶ ∀ x17 : ο . x17) ⟶ (x1 = x15 ⟶ ∀ x17 : ο . x17) ⟶ (x2 = x15 ⟶ ∀ x17 : ο . x17) ⟶ (x3 = x15 ⟶ ∀ x17 : ο . x17) ⟶ (x4 = x15 ⟶ ∀ x17 : ο . x17) ⟶ (x5 = x15 ⟶ ∀ x17 : ο . x17) ⟶ (x6 = x15 ⟶ ∀ x17 : ο . x17) ⟶ (x7 = x15 ⟶ ∀ x17 : ο . x17) ⟶ (x8 = x15 ⟶ ∀ x17 : ο . x17) ⟶ (x9 = x15 ⟶ ∀ x17 : ο . x17) ⟶ (x10 = x15 ⟶ ∀ x17 : ο . x17) ⟶ (x11 = x15 ⟶ ∀ x17 : ο . x17) ⟶ (x12 = x15 ⟶ ∀ x17 : ο . x17) ⟶ (x13 = x15 ⟶ ∀ x17 : ο . x17) ⟶ (x14 = x15 ⟶ ∀ x17 : ο . x17) ⟶ (x1 = x16 ⟶ ∀ x17 : ο . x17) ⟶ (x2 = x16 ⟶ ∀ x17 : ο . x17) ⟶ (x3 = x16 ⟶ ∀ x17 : ο . x17) ⟶ (x4 = x16 ⟶ ∀ x17 : ο . x17) ⟶ (x5 = x16 ⟶ ∀ x17 : ο . x17) ⟶ (x6 = x16 ⟶ ∀ x17 : ο . x17) ⟶ (x7 = x16 ⟶ ∀ x17 : ο . x17) ⟶ (x8 = x16 ⟶ ∀ x17 : ο . x17) ⟶ (x9 = x16 ⟶ ∀ x17 : ο . x17) ⟶ (x10 = x16 ⟶ ∀ x17 : ο . x17) ⟶ (x11 = x16 ⟶ ∀ x17 : ο . x17) ⟶ (x12 = x16 ⟶ ∀ x17 : ο . x17) ⟶ (x13 = x16 ⟶ ∀ x17 : ο . x17) ⟶ (x14 = x16 ⟶ ∀ x17 : ο . x17) ⟶ (x15 = x16 ⟶ ∀ x17 : ο . x17) ⟶ atleastp u16 x0 (proof)Definition u17 := ordsucc u16Theorem 9efa7.. : ∀ x0 x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x18 : ο . x18) ⟶ (x1 = x3 ⟶ ∀ x18 : ο . x18) ⟶ (x2 = x3 ⟶ ∀ x18 : ο . x18) ⟶ (x1 = x4 ⟶ ∀ x18 : ο . x18) ⟶ (x2 = x4 ⟶ ∀ x18 : ο . x18) ⟶ (x3 = x4 ⟶ ∀ x18 : ο . x18) ⟶ (x1 = x5 ⟶ ∀ x18 : ο . x18) ⟶ (x2 = x5 ⟶ ∀ x18 : ο . x18) ⟶ (x3 = x5 ⟶ ∀ x18 : ο . x18) ⟶ (x4 = x5 ⟶ ∀ x18 : ο . x18) ⟶ (x1 = x6 ⟶ ∀ x18 : ο . x18) ⟶ (x2 = x6 ⟶ ∀ x18 : ο . x18) ⟶ (x3 = x6 ⟶ ∀ x18 : ο . x18) ⟶ (x4 = x6 ⟶ ∀ x18 : ο . x18) ⟶ (x5 = x6 ⟶ ∀ x18 : ο . x18) ⟶ (x1 = x7 ⟶ ∀ x18 : ο . x18) ⟶ (x2 = x7 ⟶ ∀ x18 : ο . x18) ⟶ (x3 = x7 ⟶ ∀ x18 : ο . x18) ⟶ (x4 = x7 ⟶ ∀ x18 : ο . x18) ⟶ (x5 = x7 ⟶ ∀ x18 : ο . x18) ⟶ (x6 = x7 ⟶ ∀ x18 : ο . x18) ⟶ (x1 = x8 ⟶ ∀ x18 : ο . x18) ⟶ (x2 = x8 ⟶ ∀ x18 : ο . x18) ⟶ (x3 = x8 ⟶ ∀ x18 : ο . x18) ⟶ (x4 = x8 ⟶ ∀ x18 : ο . x18) ⟶ (x5 = x8 ⟶ ∀ x18 : ο . x18) ⟶ (x6 = x8 ⟶ ∀ x18 : ο . x18) ⟶ (x7 = x8 ⟶ ∀ x18 : ο . x18) ⟶ (x1 = x9 ⟶ ∀ x18 : ο . x18) ⟶ (x2 = x9 ⟶ ∀ x18 : ο . x18) ⟶ (x3 = x9 ⟶ ∀ x18 : ο . x18) ⟶ (x4 = x9 ⟶ ∀ x18 : ο . x18) ⟶ (x5 = x9 ⟶ ∀ x18 : ο . x18) ⟶ (x6 = x9 ⟶ ∀ x18 : ο . x18) ⟶ (x7 = x9 ⟶ ∀ x18 : ο . x18) ⟶ (x8 = x9 ⟶ ∀ x18 : ο . x18) ⟶ (x1 = x10 ⟶ ∀ x18 : ο . x18) ⟶ (x2 = x10 ⟶ ∀ x18 : ο . x18) ⟶ (x3 = x10 ⟶ ∀ x18 : ο . x18) ⟶ (x4 = x10 ⟶ ∀ x18 : ο . x18) ⟶ (x5 = x10 ⟶ ∀ x18 : ο . x18) ⟶ (x6 = x10 ⟶ ∀ x18 : ο . x18) ⟶ (x7 = x10 ⟶ ∀ x18 : ο . x18) ⟶ (x8 = x10 ⟶ ∀ x18 : ο . x18) ⟶ (x9 = x10 ⟶ ∀ x18 : ο . x18) ⟶ (x1 = x11 ⟶ ∀ x18 : ο . x18) ⟶ (x2 = x11 ⟶ ∀ x18 : ο . x18) ⟶ (x3 = x11 ⟶ ∀ x18 : ο . x18) ⟶ (x4 = x11 ⟶ ∀ x18 : ο . x18) ⟶ (x5 = x11 ⟶ ∀ x18 : ο . x18) ⟶ (x6 = x11 ⟶ ∀ x18 : ο . x18) ⟶ (x7 = x11 ⟶ ∀ x18 : ο . x18) ⟶ (x8 = x11 ⟶ ∀ x18 : ο . x18) ⟶ (x9 = x11 ⟶ ∀ x18 : ο . x18) ⟶ (x10 = x11 ⟶ ∀ x18 : ο . x18) ⟶ (x1 = x12 ⟶ ∀ x18 : ο . x18) ⟶ (x2 = x12 ⟶ ∀ x18 : ο . x18) ⟶ (x3 = x12 ⟶ ∀ x18 : ο . x18) ⟶ (x4 = x12 ⟶ ∀ x18 : ο . x18) ⟶ (x5 = x12 ⟶ ∀ x18 : ο . x18) ⟶ (x6 = x12 ⟶ ∀ x18 : ο . x18) ⟶ (x7 = x12 ⟶ ∀ x18 : ο . x18) ⟶ (x8 = x12 ⟶ ∀ x18 : ο . x18) ⟶ (x9 = x12 ⟶ ∀ x18 : ο . x18) ⟶ (x10 = x12 ⟶ ∀ x18 : ο . x18) ⟶ (x11 = x12 ⟶ ∀ x18 : ο . x18) ⟶ (x1 = x13 ⟶ ∀ x18 : ο . x18) ⟶ (x2 = x13 ⟶ ∀ x18 : ο . x18) ⟶ (x3 = x13 ⟶ ∀ x18 : ο . x18) ⟶ (x4 = x13 ⟶ ∀ x18 : ο . x18) ⟶ (x5 = x13 ⟶ ∀ x18 : ο . x18) ⟶ (x6 = x13 ⟶ ∀ x18 : ο . x18) ⟶ (x7 = x13 ⟶ ∀ x18 : ο . x18) ⟶ (x8 = x13 ⟶ ∀ x18 : ο . x18) ⟶ (x9 = x13 ⟶ ∀ x18 : ο . x18) ⟶ (x10 = x13 ⟶ ∀ x18 : ο . x18) ⟶ (x11 = x13 ⟶ ∀ x18 : ο . x18) ⟶ (x12 = x13 ⟶ ∀ x18 : ο . x18) ⟶ (x1 = x14 ⟶ ∀ x18 : ο . x18) ⟶ (x2 = x14 ⟶ ∀ x18 : ο . x18) ⟶ (x3 = x14 ⟶ ∀ x18 : ο . x18) ⟶ (x4 = x14 ⟶ ∀ x18 : ο . x18) ⟶ (x5 = x14 ⟶ ∀ x18 : ο . x18) ⟶ (x6 = x14 ⟶ ∀ x18 : ο . x18) ⟶ (x7 = x14 ⟶ ∀ x18 : ο . x18) ⟶ (x8 = x14 ⟶ ∀ x18 : ο . x18) ⟶ (x9 = x14 ⟶ ∀ x18 : ο . x18) ⟶ (x10 = x14 ⟶ ∀ x18 : ο . x18) ⟶ (x11 = x14 ⟶ ∀ x18 : ο . x18) ⟶ (x12 = x14 ⟶ ∀ x18 : ο . x18) ⟶ (x13 = x14 ⟶ ∀ x18 : ο . x18) ⟶ (x1 = x15 ⟶ ∀ x18 : ο . x18) ⟶ (x2 = x15 ⟶ ∀ x18 : ο . x18) ⟶ (x3 = x15 ⟶ ∀ x18 : ο . x18) ⟶ (x4 = x15 ⟶ ∀ x18 : ο . x18) ⟶ (x5 = x15 ⟶ ∀ x18 : ο . x18) ⟶ (x6 = x15 ⟶ ∀ x18 : ο . x18) ⟶ (x7 = x15 ⟶ ∀ x18 : ο . x18) ⟶ (x8 = x15 ⟶ ∀ x18 : ο . x18) ⟶ (x9 = x15 ⟶ ∀ x18 : ο . x18) ⟶ (x10 = x15 ⟶ ∀ x18 : ο . x18) ⟶ (x11 = x15 ⟶ ∀ x18 : ο . x18) ⟶ (x12 = x15 ⟶ ∀ x18 : ο . x18) ⟶ (x13 = x15 ⟶ ∀ x18 : ο . x18) ⟶ (x14 = x15 ⟶ ∀ x18 : ο . x18) ⟶ (x1 = x16 ⟶ ∀ x18 : ο . x18) ⟶ (x2 = x16 ⟶ ∀ x18 : ο . x18) ⟶ (x3 = x16 ⟶ ∀ x18 : ο . x18) ⟶ (x4 = x16 ⟶ ∀ x18 : ο . x18) ⟶ (x5 = x16 ⟶ ∀ x18 : ο . x18) ⟶ (x6 = x16 ⟶ ∀ x18 : ο . x18) ⟶ (x7 = x16 ⟶ ∀ x18 : ο . x18) ⟶ (x8 = x16 ⟶ ∀ x18 : ο . x18) ⟶ (x9 = x16 ⟶ ∀ x18 : ο . x18) ⟶ (x10 = x16 ⟶ ∀ x18 : ο . x18) ⟶ (x11 = x16 ⟶ ∀ x18 : ο . x18) ⟶ (x12 = x16 ⟶ ∀ x18 : ο . x18) ⟶ (x13 = x16 ⟶ ∀ x18 : ο . x18) ⟶ (x14 = x16 ⟶ ∀ x18 : ο . x18) ⟶ (x15 = x16 ⟶ ∀ x18 : ο . x18) ⟶ (x1 = x17 ⟶ ∀ x18 : ο . x18) ⟶ (x2 = x17 ⟶ ∀ x18 : ο . x18) ⟶ (x3 = x17 ⟶ ∀ x18 : ο . x18) ⟶ (x4 = x17 ⟶ ∀ x18 : ο . x18) ⟶ (x5 = x17 ⟶ ∀ x18 : ο . x18) ⟶ (x6 = x17 ⟶ ∀ x18 : ο . x18) ⟶ (x7 = x17 ⟶ ∀ x18 : ο . x18) ⟶ (x8 = x17 ⟶ ∀ x18 : ο . x18) ⟶ (x9 = x17 ⟶ ∀ x18 : ο . x18) ⟶ (x10 = x17 ⟶ ∀ x18 : ο . x18) ⟶ (x11 = x17 ⟶ ∀ x18 : ο . x18) ⟶ (x12 = x17 ⟶ ∀ x18 : ο . x18) ⟶ (x13 = x17 ⟶ ∀ x18 : ο . x18) ⟶ (x14 = x17 ⟶ ∀ x18 : ο . x18) ⟶ (x15 = x17 ⟶ ∀ x18 : ο . x18) ⟶ (x16 = x17 ⟶ ∀ x18 : ο . x18) ⟶ atleastp u17 x0 (proof)Definition u18 := ordsucc u17Theorem 74326.. : ∀ x0 x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x19 : ο . x19) ⟶ (x1 = x3 ⟶ ∀ x19 : ο . x19) ⟶ (x2 = x3 ⟶ ∀ x19 : ο . x19) ⟶ (x1 = x4 ⟶ ∀ x19 : ο . x19) ⟶ (x2 = x4 ⟶ ∀ x19 : ο . x19) ⟶ (x3 = x4 ⟶ ∀ x19 : ο . x19) ⟶ (x1 = x5 ⟶ ∀ x19 : ο . x19) ⟶ (x2 = x5 ⟶ ∀ x19 : ο . x19) ⟶ (x3 = x5 ⟶ ∀ x19 : ο . x19) ⟶ (x4 = x5 ⟶ ∀ x19 : ο . x19) ⟶ (x1 = x6 ⟶ ∀ x19 : ο . x19) ⟶ (x2 = x6 ⟶ ∀ x19 : ο . x19) ⟶ (x3 = x6 ⟶ ∀ x19 : ο . x19) ⟶ (x4 = x6 ⟶ ∀ x19 : ο . x19) ⟶ (x5 = x6 ⟶ ∀ x19 : ο . x19) ⟶ (x1 = x7 ⟶ ∀ x19 : ο . x19) ⟶ (x2 = x7 ⟶ ∀ x19 : ο . x19) ⟶ (x3 = x7 ⟶ ∀ x19 : ο . x19) ⟶ (x4 = x7 ⟶ ∀ x19 : ο . x19) ⟶ (x5 = x7 ⟶ ∀ x19 : ο . x19) ⟶ (x6 = x7 ⟶ ∀ x19 : ο . x19) ⟶ (x1 = x8 ⟶ ∀ x19 : ο . x19) ⟶ (x2 = x8 ⟶ ∀ x19 : ο . x19) ⟶ (x3 = x8 ⟶ ∀ x19 : ο . x19) ⟶ (x4 = x8 ⟶ ∀ x19 : ο . x19) ⟶ (x5 = x8 ⟶ ∀ x19 : ο . x19) ⟶ (x6 = x8 ⟶ ∀ x19 : ο . x19) ⟶ (x7 = x8 ⟶ ∀ x19 : ο . x19) ⟶ (x1 = x9 ⟶ ∀ x19 : ο . x19) ⟶ (x2 = x9 ⟶ ∀ x19 : ο . x19) ⟶ (x3 = x9 ⟶ ∀ x19 : ο . x19) ⟶ (x4 = x9 ⟶ ∀ x19 : ο . x19) ⟶ (x5 = x9 ⟶ ∀ x19 : ο . x19) ⟶ (x6 = x9 ⟶ ∀ x19 : ο . x19) ⟶ (x7 = x9 ⟶ ∀ x19 : ο . x19) ⟶ (x8 = x9 ⟶ ∀ x19 : ο . x19) ⟶ (x1 = x10 ⟶ ∀ x19 : ο . x19) ⟶ (x2 = x10 ⟶ ∀ x19 : ο . x19) ⟶ (x3 = x10 ⟶ ∀ x19 : ο . x19) ⟶ (x4 = x10 ⟶ ∀ x19 : ο . x19) ⟶ (x5 = x10 ⟶ ∀ x19 : ο . x19) ⟶ (x6 = x10 ⟶ ∀ x19 : ο . x19) ⟶ (x7 = x10 ⟶ ∀ x19 : ο . x19) ⟶ (x8 = x10 ⟶ ∀ x19 : ο . x19) ⟶ (x9 = x10 ⟶ ∀ x19 : ο . x19) ⟶ (x1 = x11 ⟶ ∀ x19 : ο . x19) ⟶ (x2 = x11 ⟶ ∀ x19 : ο . x19) ⟶ (x3 = x11 ⟶ ∀ x19 : ο . x19) ⟶ (x4 = x11 ⟶ ∀ x19 : ο . x19) ⟶ (x5 = x11 ⟶ ∀ x19 : ο . x19) ⟶ (x6 = x11 ⟶ ∀ x19 : ο . x19) ⟶ (x7 = x11 ⟶ ∀ x19 : ο . x19) ⟶ (x8 = x11 ⟶ ∀ x19 : ο . x19) ⟶ (x9 = x11 ⟶ ∀ x19 : ο . x19) ⟶ (x10 = x11 ⟶ ∀ x19 : ο . x19) ⟶ (x1 = x12 ⟶ ∀ x19 : ο . x19) ⟶ (x2 = x12 ⟶ ∀ x19 : ο . x19) ⟶ (x3 = x12 ⟶ ∀ x19 : ο . x19) ⟶ (x4 = x12 ⟶ ∀ x19 : ο . x19) ⟶ (x5 = x12 ⟶ ∀ x19 : ο . x19) ⟶ (x6 = x12 ⟶ ∀ x19 : ο . x19) ⟶ (x7 = x12 ⟶ ∀ x19 : ο . x19) ⟶ (x8 = x12 ⟶ ∀ x19 : ο . x19) ⟶ (x9 = x12 ⟶ ∀ x19 : ο . x19) ⟶ (x10 = x12 ⟶ ∀ x19 : ο . x19) ⟶ (x11 = x12 ⟶ ∀ x19 : ο . x19) ⟶ (x1 = x13 ⟶ ∀ x19 : ο . x19) ⟶ (x2 = x13 ⟶ ∀ x19 : ο . x19) ⟶ (x3 = x13 ⟶ ∀ x19 : ο . x19) ⟶ (x4 = x13 ⟶ ∀ x19 : ο . x19) ⟶ (x5 = x13 ⟶ ∀ x19 : ο . x19) ⟶ (x6 = x13 ⟶ ∀ x19 : ο . x19) ⟶ (x7 = x13 ⟶ ∀ x19 : ο . x19) ⟶ (x8 = x13 ⟶ ∀ x19 : ο . x19) ⟶ (x9 = x13 ⟶ ∀ x19 : ο . x19) ⟶ (x10 = x13 ⟶ ∀ x19 : ο . x19) ⟶ (x11 = x13 ⟶ ∀ x19 : ο . x19) ⟶ (x12 = x13 ⟶ ∀ x19 : ο . x19) ⟶ (x1 = x14 ⟶ ∀ x19 : ο . x19) ⟶ (x2 = x14 ⟶ ∀ x19 : ο . x19) ⟶ (x3 = x14 ⟶ ∀ x19 : ο . x19) ⟶ (x4 = x14 ⟶ ∀ x19 : ο . x19) ⟶ (x5 = x14 ⟶ ∀ x19 : ο . x19) ⟶ (x6 = x14 ⟶ ∀ x19 : ο . x19) ⟶ (x7 = x14 ⟶ ∀ x19 : ο . x19) ⟶ (x8 = x14 ⟶ ∀ x19 : ο . x19) ⟶ (x9 = x14 ⟶ ∀ x19 : ο . x19) ⟶ (x10 = x14 ⟶ ∀ x19 : ο . x19) ⟶ (x11 = x14 ⟶ ∀ x19 : ο . x19) ⟶ (x12 = x14 ⟶ ∀ x19 : ο . x19) ⟶ (x13 = x14 ⟶ ∀ x19 : ο . x19) ⟶ (x1 = x15 ⟶ ∀ x19 : ο . x19) ⟶ (x2 = x15 ⟶ ∀ x19 : ο . x19) ⟶ (x3 = x15 ⟶ ∀ x19 : ο . x19) ⟶ (x4 = x15 ⟶ ∀ x19 : ο . x19) ⟶ (x5 = x15 ⟶ ∀ x19 : ο . x19) ⟶ (x6 = x15 ⟶ ∀ x19 : ο . x19) ⟶ (x7 = x15 ⟶ ∀ x19 : ο . x19) ⟶ (x8 = x15 ⟶ ∀ x19 : ο . x19) ⟶ (x9 = x15 ⟶ ∀ x19 : ο . x19) ⟶ (x10 = x15 ⟶ ∀ x19 : ο . x19) ⟶ (x11 = x15 ⟶ ∀ x19 : ο . x19) ⟶ (x12 = x15 ⟶ ∀ x19 : ο . x19) ⟶ (x13 = x15 ⟶ ∀ x19 : ο . x19) ⟶ (x14 = x15 ⟶ ∀ x19 : ο . x19) ⟶ (x1 = x16 ⟶ ∀ x19 : ο . x19) ⟶ (x2 = x16 ⟶ ∀ x19 : ο . x19) ⟶ (x3 = x16 ⟶ ∀ x19 : ο . x19) ⟶ (x4 = x16 ⟶ ∀ x19 : ο . x19) ⟶ (x5 = x16 ⟶ ∀ x19 : ο . x19) ⟶ (x6 = x16 ⟶ ∀ x19 : ο . x19) ⟶ (x7 = x16 ⟶ ∀ x19 : ο . x19) ⟶ (x8 = x16 ⟶ ∀ x19 : ο . x19) ⟶ (x9 = x16 ⟶ ∀ x19 : ο . x19) ⟶ (x10 = x16 ⟶ ∀ x19 : ο . x19) ⟶ (x11 = x16 ⟶ ∀ x19 : ο . x19) ⟶ (x12 = x16 ⟶ ∀ x19 : ο . x19) ⟶ (x13 = x16 ⟶ ∀ x19 : ο . x19) ⟶ (x14 = x16 ⟶ ∀ x19 : ο . x19) ⟶ (x15 = x16 ⟶ ∀ x19 : ο . x19) ⟶ (x1 = x17 ⟶ ∀ x19 : ο . x19) ⟶ (x2 = x17 ⟶ ∀ x19 : ο . x19) ⟶ (x3 = x17 ⟶ ∀ x19 : ο . x19) ⟶ (x4 = x17 ⟶ ∀ x19 : ο . x19) ⟶ (x5 = x17 ⟶ ∀ x19 : ο . x19) ⟶ (x6 = x17 ⟶ ∀ x19 : ο . x19) ⟶ (x7 = x17 ⟶ ∀ x19 : ο . x19) ⟶ (x8 = x17 ⟶ ∀ x19 : ο . x19) ⟶ (x9 = x17 ⟶ ∀ x19 : ο . x19) ⟶ (x10 = x17 ⟶ ∀ x19 : ο . x19) ⟶ (x11 = x17 ⟶ ∀ x19 : ο . x19) ⟶ (x12 = x17 ⟶ ∀ x19 : ο . x19) ⟶ (x13 = x17 ⟶ ∀ x19 : ο . x19) ⟶ (x14 = x17 ⟶ ∀ x19 : ο . x19) ⟶ (x15 = x17 ⟶ ∀ x19 : ο . x19) ⟶ (x16 = x17 ⟶ ∀ x19 : ο . x19) ⟶ (x1 = x18 ⟶ ∀ x19 : ο . x19) ⟶ (x2 = x18 ⟶ ∀ x19 : ο . x19) ⟶ (x3 = x18 ⟶ ∀ x19 : ο . x19) ⟶ (x4 = x18 ⟶ ∀ x19 : ο . x19) ⟶ (x5 = x18 ⟶ ∀ x19 : ο . x19) ⟶ (x6 = x18 ⟶ ∀ x19 : ο . x19) ⟶ (x7 = x18 ⟶ ∀ x19 : ο . x19) ⟶ (x8 = x18 ⟶ ∀ x19 : ο . x19) ⟶ (x9 = x18 ⟶ ∀ x19 : ο . x19) ⟶ (x10 = x18 ⟶ ∀ x19 : ο . x19) ⟶ (x11 = x18 ⟶ ∀ x19 : ο . x19) ⟶ (x12 = x18 ⟶ ∀ x19 : ο . x19) ⟶ (x13 = x18 ⟶ ∀ x19 : ο . x19) ⟶ (x14 = x18 ⟶ ∀ x19 : ο . x19) ⟶ (x15 = x18 ⟶ ∀ x19 : ο . x19) ⟶ (x16 = x18 ⟶ ∀ x19 : ο . x19) ⟶ (x17 = x18 ⟶ ∀ x19 : ο . x19) ⟶ atleastp u18 x0 (proof)Definition u19 := ordsucc u18Theorem 8ca1e.. : ∀ x0 x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x20 : ο . x20) ⟶ (x1 = x3 ⟶ ∀ x20 : ο . x20) ⟶ (x2 = x3 ⟶ ∀ x20 : ο . x20) ⟶ (x1 = x4 ⟶ ∀ x20 : ο . x20) ⟶ (x2 = x4 ⟶ ∀ x20 : ο . x20) ⟶ (x3 = x4 ⟶ ∀ x20 : ο . x20) ⟶ (x1 = x5 ⟶ ∀ x20 : ο . x20) ⟶ (x2 = x5 ⟶ ∀ x20 : ο . x20) ⟶ (x3 = x5 ⟶ ∀ x20 : ο . x20) ⟶ (x4 = x5 ⟶ ∀ x20 : ο . x20) ⟶ (x1 = x6 ⟶ ∀ x20 : ο . x20) ⟶ (x2 = x6 ⟶ ∀ x20 : ο . x20) ⟶ (x3 = x6 ⟶ ∀ x20 : ο . x20) ⟶ (x4 = x6 ⟶ ∀ x20 : ο . x20) ⟶ (x5 = x6 ⟶ ∀ x20 : ο . x20) ⟶ (x1 = x7 ⟶ ∀ x20 : ο . x20) ⟶ (x2 = x7 ⟶ ∀ x20 : ο . x20) ⟶ (x3 = x7 ⟶ ∀ x20 : ο . x20) ⟶ (x4 = x7 ⟶ ∀ x20 : ο . x20) ⟶ (x5 = x7 ⟶ ∀ x20 : ο . x20) ⟶ (x6 = x7 ⟶ ∀ x20 : ο . x20) ⟶ (x1 = x8 ⟶ ∀ x20 : ο . x20) ⟶ (x2 = x8 ⟶ ∀ x20 : ο . x20) ⟶ (x3 = x8 ⟶ ∀ x20 : ο . x20) ⟶ (x4 = x8 ⟶ ∀ x20 : ο . x20) ⟶ (x5 = x8 ⟶ ∀ x20 : ο . x20) ⟶ (x6 = x8 ⟶ ∀ x20 : ο . x20) ⟶ (x7 = x8 ⟶ ∀ x20 : ο . x20) ⟶ (x1 = x9 ⟶ ∀ x20 : ο . x20) ⟶ (x2 = x9 ⟶ ∀ x20 : ο . x20) ⟶ (x3 = x9 ⟶ ∀ x20 : ο . x20) ⟶ (x4 = x9 ⟶ ∀ x20 : ο . x20) ⟶ (x5 = x9 ⟶ ∀ x20 : ο . x20) ⟶ (x6 = x9 ⟶ ∀ x20 : ο . x20) ⟶ (x7 = x9 ⟶ ∀ x20 : ο . x20) ⟶ (x8 = x9 ⟶ ∀ x20 : ο . x20) ⟶ (x1 = x10 ⟶ ∀ x20 : ο . x20) ⟶ (x2 = x10 ⟶ ∀ x20 : ο . x20) ⟶ (x3 = x10 ⟶ ∀ x20 : ο . x20) ⟶ (x4 = x10 ⟶ ∀ x20 : ο . x20) ⟶ (x5 = x10 ⟶ ∀ x20 : ο . x20) ⟶ (x6 = x10 ⟶ ∀ x20 : ο . x20) ⟶ (x7 = x10 ⟶ ∀ x20 : ο . x20) ⟶ (x8 = x10 ⟶ ∀ x20 : ο . x20) ⟶ (x9 = x10 ⟶ ∀ x20 : ο . x20) ⟶ (x1 = x11 ⟶ ∀ x20 : ο . x20) ⟶ (x2 = x11 ⟶ ∀ x20 : ο . x20) ⟶ (x3 = x11 ⟶ ∀ x20 : ο . x20) ⟶ (x4 = x11 ⟶ ∀ x20 : ο . x20) ⟶ (x5 = x11 ⟶ ∀ x20 : ο . x20) ⟶ (x6 = x11 ⟶ ∀ x20 : ο . x20) ⟶ (x7 = x11 ⟶ ∀ x20 : ο . x20) ⟶ (x8 = x11 ⟶ ∀ x20 : ο . x20) ⟶ (x9 = x11 ⟶ ∀ x20 : ο . x20) ⟶ (x10 = x11 ⟶ ∀ x20 : ο . x20) ⟶ (x1 = x12 ⟶ ∀ x20 : ο . x20) ⟶ (x2 = x12 ⟶ ∀ x20 : ο . x20) ⟶ (x3 = x12 ⟶ ∀ x20 : ο . x20) ⟶ (x4 = x12 ⟶ ∀ x20 : ο . x20) ⟶ (x5 = x12 ⟶ ∀ x20 : ο . x20) ⟶ (x6 = x12 ⟶ ∀ x20 : ο . x20) ⟶ (x7 = x12 ⟶ ∀ x20 : ο . x20) ⟶ (x8 = x12 ⟶ ∀ x20 : ο . x20) ⟶ (x9 = x12 ⟶ ∀ x20 : ο . x20) ⟶ (x10 = x12 ⟶ ∀ x20 : ο . x20) ⟶ (x11 = x12 ⟶ ∀ x20 : ο . x20) ⟶ (x1 = x13 ⟶ ∀ x20 : ο . x20) ⟶ (x2 = x13 ⟶ ∀ x20 : ο . x20) ⟶ (x3 = x13 ⟶ ∀ x20 : ο . x20) ⟶ (x4 = x13 ⟶ ∀ x20 : ο . x20) ⟶ (x5 = x13 ⟶ ∀ x20 : ο . x20) ⟶ (x6 = x13 ⟶ ∀ x20 : ο . x20) ⟶ (x7 = x13 ⟶ ∀ x20 : ο . x20) ⟶ (x8 = x13 ⟶ ∀ x20 : ο . x20) ⟶ (x9 = x13 ⟶ ∀ x20 : ο . x20) ⟶ (x10 = x13 ⟶ ∀ x20 : ο . x20) ⟶ (x11 = x13 ⟶ ∀ x20 : ο . x20) ⟶ (x12 = x13 ⟶ ∀ x20 : ο . x20) ⟶ (x1 = x14 ⟶ ∀ x20 : ο . x20) ⟶ (x2 = x14 ⟶ ∀ x20 : ο . x20) ⟶ (x3 = x14 ⟶ ∀ x20 : ο . x20) ⟶ (x4 = x14 ⟶ ∀ x20 : ο . x20) ⟶ (x5 = x14 ⟶ ∀ x20 : ο . x20) ⟶ (x6 = x14 ⟶ ∀ x20 : ο . x20) ⟶ (x7 = x14 ⟶ ∀ x20 : ο . x20) ⟶ (x8 = x14 ⟶ ∀ x20 : ο . x20) ⟶ (x9 = x14 ⟶ ∀ x20 : ο . x20) ⟶ (x10 = x14 ⟶ ∀ x20 : ο . x20) ⟶ (x11 = x14 ⟶ ∀ x20 : ο . x20) ⟶ (x12 = x14 ⟶ ∀ x20 : ο . x20) ⟶ (x13 = x14 ⟶ ∀ x20 : ο . x20) ⟶ (x1 = x15 ⟶ ∀ x20 : ο . x20) ⟶ (x2 = x15 ⟶ ∀ x20 : ο . x20) ⟶ (x3 = x15 ⟶ ∀ x20 : ο . x20) ⟶ (x4 = x15 ⟶ ∀ x20 : ο . x20) ⟶ (x5 = x15 ⟶ ∀ x20 : ο . x20) ⟶ (x6 = x15 ⟶ ∀ x20 : ο . x20) ⟶ (x7 = x15 ⟶ ∀ x20 : ο . x20) ⟶ (x8 = x15 ⟶ ∀ x20 : ο . x20) ⟶ (x9 = x15 ⟶ ∀ x20 : ο . x20) ⟶ (x10 = x15 ⟶ ∀ x20 : ο . x20) ⟶ (x11 = x15 ⟶ ∀ x20 : ο . x20) ⟶ (x12 = x15 ⟶ ∀ x20 : ο . x20) ⟶ (x13 = x15 ⟶ ∀ x20 : ο . x20) ⟶ (x14 = x15 ⟶ ∀ x20 : ο . x20) ⟶ (x1 = x16 ⟶ ∀ x20 : ο . x20) ⟶ (x2 = x16 ⟶ ∀ x20 : ο . x20) ⟶ (x3 = x16 ⟶ ∀ x20 : ο . x20) ⟶ (x4 = x16 ⟶ ∀ x20 : ο . x20) ⟶ (x5 = x16 ⟶ ∀ x20 : ο . x20) ⟶ (x6 = x16 ⟶ ∀ x20 : ο . x20) ⟶ (x7 = x16 ⟶ ∀ x20 : ο . x20) ⟶ (x8 = x16 ⟶ ∀ x20 : ο . x20) ⟶ (x9 = x16 ⟶ ∀ x20 : ο . x20) ⟶ (x10 = x16 ⟶ ∀ x20 : ο . x20) ⟶ (x11 = x16 ⟶ ∀ x20 : ο . x20) ⟶ (x12 = x16 ⟶ ∀ x20 : ο . x20) ⟶ (x13 = x16 ⟶ ∀ x20 : ο . x20) ⟶ (x14 = x16 ⟶ ∀ x20 : ο . x20) ⟶ (x15 = x16 ⟶ ∀ x20 : ο . x20) ⟶ (x1 = x17 ⟶ ∀ x20 : ο . x20) ⟶ (x2 = x17 ⟶ ∀ x20 : ο . x20) ⟶ (x3 = x17 ⟶ ∀ x20 : ο . x20) ⟶ (x4 = x17 ⟶ ∀ x20 : ο . x20) ⟶ (x5 = x17 ⟶ ∀ x20 : ο . x20) ⟶ (x6 = x17 ⟶ ∀ x20 : ο . x20) ⟶ (x7 = x17 ⟶ ∀ x20 : ο . x20) ⟶ (x8 = x17 ⟶ ∀ x20 : ο . x20) ⟶ (x9 = x17 ⟶ ∀ x20 : ο . x20) ⟶ (x10 = x17 ⟶ ∀ x20 : ο . x20) ⟶ (x11 = x17 ⟶ ∀ x20 : ο . x20) ⟶ (x12 = x17 ⟶ ∀ x20 : ο . x20) ⟶ (x13 = x17 ⟶ ∀ x20 : ο . x20) ⟶ (x14 = x17 ⟶ ∀ x20 : ο . x20) ⟶ (x15 = x17 ⟶ ∀ x20 : ο . x20) ⟶ (x16 = x17 ⟶ ∀ x20 : ο . x20) ⟶ (x1 = x18 ⟶ ∀ x20 : ο . x20) ⟶ (x2 = x18 ⟶ ∀ x20 : ο . x20) ⟶ (x3 = x18 ⟶ ∀ x20 : ο . x20) ⟶ (x4 = x18 ⟶ ∀ x20 : ο . x20) ⟶ (x5 = x18 ⟶ ∀ x20 : ο . x20) ⟶ (x6 = x18 ⟶ ∀ x20 : ο . x20) ⟶ (x7 = x18 ⟶ ∀ x20 : ο . x20) ⟶ (x8 = x18 ⟶ ∀ x20 : ο . x20) ⟶ (x9 = x18 ⟶ ∀ x20 : ο . x20) ⟶ (x10 = x18 ⟶ ∀ x20 : ο . x20) ⟶ (x11 = x18 ⟶ ∀ x20 : ο . x20) ⟶ (x12 = x18 ⟶ ∀ x20 : ο . x20) ⟶ (x13 = x18 ⟶ ∀ x20 : ο . x20) ⟶ (x14 = x18 ⟶ ∀ x20 : ο . x20) ⟶ (x15 = x18 ⟶ ∀ x20 : ο . x20) ⟶ (x16 = x18 ⟶ ∀ x20 : ο . x20) ⟶ (x17 = x18 ⟶ ∀ x20 : ο . x20) ⟶ (x1 = x19 ⟶ ∀ x20 : ο . x20) ⟶ (x2 = x19 ⟶ ∀ x20 : ο . x20) ⟶ (x3 = x19 ⟶ ∀ x20 : ο . x20) ⟶ (x4 = x19 ⟶ ∀ x20 : ο . x20) ⟶ (x5 = x19 ⟶ ∀ x20 : ο . x20) ⟶ (x6 = x19 ⟶ ∀ x20 : ο . x20) ⟶ (x7 = x19 ⟶ ∀ x20 : ο . x20) ⟶ (x8 = x19 ⟶ ∀ x20 : ο . x20) ⟶ (x9 = x19 ⟶ ∀ x20 : ο . x20) ⟶ (x10 = x19 ⟶ ∀ x20 : ο . x20) ⟶ (x11 = x19 ⟶ ∀ x20 : ο . x20) ⟶ (x12 = x19 ⟶ ∀ x20 : ο . x20) ⟶ (x13 = x19 ⟶ ∀ x20 : ο . x20) ⟶ (x14 = x19 ⟶ ∀ x20 : ο . x20) ⟶ (x15 = x19 ⟶ ∀ x20 : ο . x20) ⟶ (x16 = x19 ⟶ ∀ x20 : ο . x20) ⟶ (x17 = x19 ⟶ ∀ x20 : ο . x20) ⟶ (x18 = x19 ⟶ ∀ x20 : ο . x20) ⟶ atleastp u19 x0 (proof)Definition u20 := ordsucc u19Theorem f67f7.. : ∀ x0 x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x21 : ο . x21) ⟶ (x1 = x3 ⟶ ∀ x21 : ο . x21) ⟶ (x2 = x3 ⟶ ∀ x21 : ο . x21) ⟶ (x1 = x4 ⟶ ∀ x21 : ο . x21) ⟶ (x2 = x4 ⟶ ∀ x21 : ο . x21) ⟶ (x3 = x4 ⟶ ∀ x21 : ο . x21) ⟶ (x1 = x5 ⟶ ∀ x21 : ο . x21) ⟶ (x2 = x5 ⟶ ∀ x21 : ο . x21) ⟶ (x3 = x5 ⟶ ∀ x21 : ο . x21) ⟶ (x4 = x5 ⟶ ∀ x21 : ο . x21) ⟶ (x1 = x6 ⟶ ∀ x21 : ο . x21) ⟶ (x2 = x6 ⟶ ∀ x21 : ο . x21) ⟶ (x3 = x6 ⟶ ∀ x21 : ο . x21) ⟶ (x4 = x6 ⟶ ∀ x21 : ο . x21) ⟶ (x5 = x6 ⟶ ∀ x21 : ο . x21) ⟶ (x1 = x7 ⟶ ∀ x21 : ο . x21) ⟶ (x2 = x7 ⟶ ∀ x21 : ο . x21) ⟶ (x3 = x7 ⟶ ∀ x21 : ο . x21) ⟶ (x4 = x7 ⟶ ∀ x21 : ο . x21) ⟶ (x5 = x7 ⟶ ∀ x21 : ο . x21) ⟶ (x6 = x7 ⟶ ∀ x21 : ο . x21) ⟶ (x1 = x8 ⟶ ∀ x21 : ο . x21) ⟶ (x2 = x8 ⟶ ∀ x21 : ο . x21) ⟶ (x3 = x8 ⟶ ∀ x21 : ο . x21) ⟶ (x4 = x8 ⟶ ∀ x21 : ο . x21) ⟶ (x5 = x8 ⟶ ∀ x21 : ο . x21) ⟶ (x6 = x8 ⟶ ∀ x21 : ο . x21) ⟶ (x7 = x8 ⟶ ∀ x21 : ο . x21) ⟶ (x1 = x9 ⟶ ∀ x21 : ο . x21) ⟶ (x2 = x9 ⟶ ∀ x21 : ο . x21) ⟶ (x3 = x9 ⟶ ∀ x21 : ο . x21) ⟶ (x4 = x9 ⟶ ∀ x21 : ο . x21) ⟶ (x5 = x9 ⟶ ∀ x21 : ο . x21) ⟶ (x6 = x9 ⟶ ∀ x21 : ο . x21) ⟶ (x7 = x9 ⟶ ∀ x21 : ο . x21) ⟶ (x8 = x9 ⟶ ∀ x21 : ο . x21) ⟶ (x1 = x10 ⟶ ∀ x21 : ο . x21) ⟶ (x2 = x10 ⟶ ∀ x21 : ο . x21) ⟶ (x3 = x10 ⟶ ∀ x21 : ο . x21) ⟶ (x4 = x10 ⟶ ∀ x21 : ο . x21) ⟶ (x5 = x10 ⟶ ∀ x21 : ο . x21) ⟶ (x6 = x10 ⟶ ∀ x21 : ο . x21) ⟶ (x7 = x10 ⟶ ∀ x21 : ο . x21) ⟶ (x8 = x10 ⟶ ∀ x21 : ο . x21) ⟶ (x9 = x10 ⟶ ∀ x21 : ο . x21) ⟶ (x1 = x11 ⟶ ∀ x21 : ο . x21) ⟶ (x2 = x11 ⟶ ∀ x21 : ο . x21) ⟶ (x3 = x11 ⟶ ∀ x21 : ο . x21) ⟶ (x4 = x11 ⟶ ∀ x21 : ο . x21) ⟶ (x5 = x11 ⟶ ∀ x21 : ο . x21) ⟶ (x6 = x11 ⟶ ∀ x21 : ο . x21) ⟶ (x7 = x11 ⟶ ∀ x21 : ο . x21) ⟶ (x8 = x11 ⟶ ∀ x21 : ο . x21) ⟶ (x9 = x11 ⟶ ∀ x21 : ο . x21) ⟶ (x10 = x11 ⟶ ∀ x21 : ο . x21) ⟶ (x1 = x12 ⟶ ∀ x21 : ο . x21) ⟶ (x2 = x12 ⟶ ∀ x21 : ο . x21) ⟶ (x3 = x12 ⟶ ∀ x21 : ο . x21) ⟶ (x4 = x12 ⟶ ∀ x21 : ο . x21) ⟶ (x5 = x12 ⟶ ∀ x21 : ο . x21) ⟶ (x6 = x12 ⟶ ∀ x21 : ο . x21) ⟶ (x7 = x12 ⟶ ∀ x21 : ο . x21) ⟶ (x8 = x12 ⟶ ∀ x21 : ο . x21) ⟶ (x9 = x12 ⟶ ∀ x21 : ο . x21) ⟶ (x10 = x12 ⟶ ∀ x21 : ο . x21) ⟶ (x11 = x12 ⟶ ∀ x21 : ο . x21) ⟶ (x1 = x13 ⟶ ∀ x21 : ο . x21) ⟶ (x2 = x13 ⟶ ∀ x21 : ο . x21) ⟶ (x3 = x13 ⟶ ∀ x21 : ο . x21) ⟶ (x4 = x13 ⟶ ∀ x21 : ο . x21) ⟶ (x5 = x13 ⟶ ∀ x21 : ο . x21) ⟶ (x6 = x13 ⟶ ∀ x21 : ο . x21) ⟶ (x7 = x13 ⟶ ∀ x21 : ο . x21) ⟶ (x8 = x13 ⟶ ∀ x21 : ο . x21) ⟶ (x9 = x13 ⟶ ∀ x21 : ο . x21) ⟶ (x10 = x13 ⟶ ∀ x21 : ο . x21) ⟶ (x11 = x13 ⟶ ∀ x21 : ο . x21) ⟶ (x12 = x13 ⟶ ∀ x21 : ο . x21) ⟶ (x1 = x14 ⟶ ∀ x21 : ο . x21) ⟶ (x2 = x14 ⟶ ∀ x21 : ο . x21) ⟶ (x3 = x14 ⟶ ∀ x21 : ο . x21) ⟶ (x4 = x14 ⟶ ∀ x21 : ο . x21) ⟶ (x5 = x14 ⟶ ∀ x21 : ο . x21) ⟶ (x6 = x14 ⟶ ∀ x21 : ο . x21) ⟶ (x7 = x14 ⟶ ∀ x21 : ο . x21) ⟶ (x8 = x14 ⟶ ∀ x21 : ο . x21) ⟶ (x9 = x14 ⟶ ∀ x21 : ο . x21) ⟶ (x10 = x14 ⟶ ∀ x21 : ο . x21) ⟶ (x11 = x14 ⟶ ∀ x21 : ο . x21) ⟶ (x12 = x14 ⟶ ∀ x21 : ο . x21) ⟶ (x13 = x14 ⟶ ∀ x21 : ο . x21) ⟶ (x1 = x15 ⟶ ∀ x21 : ο . x21) ⟶ (x2 = x15 ⟶ ∀ x21 : ο . x21) ⟶ (x3 = x15 ⟶ ∀ x21 : ο . x21) ⟶ (x4 = x15 ⟶ ∀ x21 : ο . x21) ⟶ (x5 = x15 ⟶ ∀ x21 : ο . x21) ⟶ (x6 = x15 ⟶ ∀ x21 : ο . x21) ⟶ (x7 = x15 ⟶ ∀ x21 : ο . x21) ⟶ (x8 = x15 ⟶ ∀ x21 : ο . x21) ⟶ (x9 = x15 ⟶ ∀ x21 : ο . x21) ⟶ (x10 = x15 ⟶ ∀ x21 : ο . x21) ⟶ (x11 = x15 ⟶ ∀ x21 : ο . x21) ⟶ (x12 = x15 ⟶ ∀ x21 : ο . x21) ⟶ (x13 = x15 ⟶ ∀ x21 : ο . x21) ⟶ (x14 = x15 ⟶ ∀ x21 : ο . x21) ⟶ (x1 = x16 ⟶ ∀ x21 : ο . x21) ⟶ (x2 = x16 ⟶ ∀ x21 : ο . x21) ⟶ (x3 = x16 ⟶ ∀ x21 : ο . x21) ⟶ (x4 = x16 ⟶ ∀ x21 : ο . x21) ⟶ (x5 = x16 ⟶ ∀ x21 : ο . x21) ⟶ (x6 = x16 ⟶ ∀ x21 : ο . x21) ⟶ (x7 = x16 ⟶ ∀ x21 : ο . x21) ⟶ (x8 = x16 ⟶ ∀ x21 : ο . x21) ⟶ (x9 = x16 ⟶ ∀ x21 : ο . x21) ⟶ (x10 = x16 ⟶ ∀ x21 : ο . x21) ⟶ (x11 = x16 ⟶ ∀ x21 : ο . x21) ⟶ (x12 = x16 ⟶ ∀ x21 : ο . x21) ⟶ (x13 = x16 ⟶ ∀ x21 : ο . x21) ⟶ (x14 = x16 ⟶ ∀ x21 : ο . x21) ⟶ (x15 = x16 ⟶ ∀ x21 : ο . x21) ⟶ (x1 = x17 ⟶ ∀ x21 : ο . x21) ⟶ (x2 = x17 ⟶ ∀ x21 : ο . x21) ⟶ (x3 = x17 ⟶ ∀ x21 : ο . x21) ⟶ (x4 = x17 ⟶ ∀ x21 : ο . x21) ⟶ (x5 = x17 ⟶ ∀ x21 : ο . x21) ⟶ (x6 = x17 ⟶ ∀ x21 : ο . x21) ⟶ (x7 = x17 ⟶ ∀ x21 : ο . x21) ⟶ (x8 = x17 ⟶ ∀ x21 : ο . x21) ⟶ (x9 = x17 ⟶ ∀ x21 : ο . x21) ⟶ (x10 = x17 ⟶ ∀ x21 : ο . x21) ⟶ (x11 = x17 ⟶ ∀ x21 : ο . x21) ⟶ (x12 = x17 ⟶ ∀ x21 : ο . x21) ⟶ (x13 = x17 ⟶ ∀ x21 : ο . x21) ⟶ (x14 = x17 ⟶ ∀ x21 : ο . x21) ⟶ (x15 = x17 ⟶ ∀ x21 : ο . x21) ⟶ (x16 = x17 ⟶ ∀ x21 : ο . x21) ⟶ (x1 = x18 ⟶ ∀ x21 : ο . x21) ⟶ (x2 = x18 ⟶ ∀ x21 : ο . x21) ⟶ (x3 = x18 ⟶ ∀ x21 : ο . x21) ⟶ (x4 = x18 ⟶ ∀ x21 : ο . x21) ⟶ (x5 = x18 ⟶ ∀ x21 : ο . x21) ⟶ (x6 = x18 ⟶ ∀ x21 : ο . x21) ⟶ (x7 = x18 ⟶ ∀ x21 : ο . x21) ⟶ (x8 = x18 ⟶ ∀ x21 : ο . x21) ⟶ (x9 = x18 ⟶ ∀ x21 : ο . x21) ⟶ (x10 = x18 ⟶ ∀ x21 : ο . x21) ⟶ (x11 = x18 ⟶ ∀ x21 : ο . x21) ⟶ (x12 = x18 ⟶ ∀ x21 : ο . x21) ⟶ (x13 = x18 ⟶ ∀ x21 : ο . x21) ⟶ (x14 = x18 ⟶ ∀ x21 : ο . x21) ⟶ (x15 = x18 ⟶ ∀ x21 : ο . x21) ⟶ (x16 = x18 ⟶ ∀ x21 : ο . x21) ⟶ (x17 = x18 ⟶ ∀ x21 : ο . x21) ⟶ (x1 = x19 ⟶ ∀ x21 : ο . x21) ⟶ (x2 = x19 ⟶ ∀ x21 : ο . x21) ⟶ (x3 = x19 ⟶ ∀ x21 : ο . x21) ⟶ (x4 = x19 ⟶ ∀ x21 : ο . x21) ⟶ (x5 = x19 ⟶ ∀ x21 : ο . x21) ⟶ (x6 = x19 ⟶ ∀ x21 : ο . x21) ⟶ (x7 = x19 ⟶ ∀ x21 : ο . x21) ⟶ (x8 = x19 ⟶ ∀ x21 : ο . x21) ⟶ (x9 = x19 ⟶ ∀ x21 : ο . x21) ⟶ (x10 = x19 ⟶ ∀ x21 : ο . x21) ⟶ (x11 = x19 ⟶ ∀ x21 : ο . x21) ⟶ (x12 = x19 ⟶ ∀ x21 : ο . x21) ⟶ (x13 = x19 ⟶ ∀ x21 : ο . x21) ⟶ (x14 = x19 ⟶ ∀ x21 : ο . x21) ⟶ (x15 = x19 ⟶ ∀ x21 : ο . x21) ⟶ (x16 = x19 ⟶ ∀ x21 : ο . x21) ⟶ (x17 = x19 ⟶ ∀ x21 : ο . x21) ⟶ (x18 = x19 ⟶ ∀ x21 : ο . x21) ⟶ (x1 = x20 ⟶ ∀ x21 : ο . x21) ⟶ (x2 = x20 ⟶ ∀ x21 : ο . x21) ⟶ (x3 = x20 ⟶ ∀ x21 : ο . x21) ⟶ (x4 = x20 ⟶ ∀ x21 : ο . x21) ⟶ (x5 = x20 ⟶ ∀ x21 : ο . x21) ⟶ (x6 = x20 ⟶ ∀ x21 : ο . x21) ⟶ (x7 = x20 ⟶ ∀ x21 : ο . x21) ⟶ (x8 = x20 ⟶ ∀ x21 : ο . x21) ⟶ (x9 = x20 ⟶ ∀ x21 : ο . x21) ⟶ (x10 = x20 ⟶ ∀ x21 : ο . x21) ⟶ (x11 = x20 ⟶ ∀ x21 : ο . x21) ⟶ (x12 = x20 ⟶ ∀ x21 : ο . x21) ⟶ (x13 = x20 ⟶ ∀ x21 : ο . x21) ⟶ (x14 = x20 ⟶ ∀ x21 : ο . x21) ⟶ (x15 = x20 ⟶ ∀ x21 : ο . x21) ⟶ (x16 = x20 ⟶ ∀ x21 : ο . x21) ⟶ (x17 = x20 ⟶ ∀ x21 : ο . x21) ⟶ (x18 = x20 ⟶ ∀ x21 : ο . x21) ⟶ (x19 = x20 ⟶ ∀ x21 : ο . x21) ⟶ atleastp u20 x0 (proof)Definition u21 := ordsucc u20Theorem 084ef.. : ∀ x0 x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ ∀ x21 . x21 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x22 : ο . x22) ⟶ (x1 = x3 ⟶ ∀ x22 : ο . x22) ⟶ (x2 = x3 ⟶ ∀ x22 : ο . x22) ⟶ (x1 = x4 ⟶ ∀ x22 : ο . x22) ⟶ (x2 = x4 ⟶ ∀ x22 : ο . x22) ⟶ (x3 = x4 ⟶ ∀ x22 : ο . x22) ⟶ (x1 = x5 ⟶ ∀ x22 : ο . x22) ⟶ (x2 = x5 ⟶ ∀ x22 : ο . x22) ⟶ (x3 = x5 ⟶ ∀ x22 : ο . x22) ⟶ (x4 = x5 ⟶ ∀ x22 : ο . x22) ⟶ (x1 = x6 ⟶ ∀ x22 : ο . x22) ⟶ (x2 = x6 ⟶ ∀ x22 : ο . x22) ⟶ (x3 = x6 ⟶ ∀ x22 : ο . x22) ⟶ (x4 = x6 ⟶ ∀ x22 : ο . x22) ⟶ (x5 = x6 ⟶ ∀ x22 : ο . x22) ⟶ (x1 = x7 ⟶ ∀ x22 : ο . x22) ⟶ (x2 = x7 ⟶ ∀ x22 : ο . x22) ⟶ (x3 = x7 ⟶ ∀ x22 : ο . x22) ⟶ (x4 = x7 ⟶ ∀ x22 : ο . x22) ⟶ (x5 = x7 ⟶ ∀ x22 : ο . x22) ⟶ (x6 = x7 ⟶ ∀ x22 : ο . x22) ⟶ (x1 = x8 ⟶ ∀ x22 : ο . x22) ⟶ (x2 = x8 ⟶ ∀ x22 : ο . x22) ⟶ (x3 = x8 ⟶ ∀ x22 : ο . x22) ⟶ (x4 = x8 ⟶ ∀ x22 : ο . x22) ⟶ (x5 = x8 ⟶ ∀ x22 : ο . x22) ⟶ (x6 = x8 ⟶ ∀ x22 : ο . x22) ⟶ (x7 = x8 ⟶ ∀ x22 : ο . x22) ⟶ (x1 = x9 ⟶ ∀ x22 : ο . x22) ⟶ (x2 = x9 ⟶ ∀ x22 : ο . x22) ⟶ (x3 = x9 ⟶ ∀ x22 : ο . x22) ⟶ (x4 = x9 ⟶ ∀ x22 : ο . x22) ⟶ (x5 = x9 ⟶ ∀ x22 : ο . x22) ⟶ (x6 = x9 ⟶ ∀ x22 : ο . x22) ⟶ (x7 = x9 ⟶ ∀ x22 : ο . x22) ⟶ (x8 = x9 ⟶ ∀ x22 : ο . x22) ⟶ (x1 = x10 ⟶ ∀ x22 : ο . x22) ⟶ (x2 = x10 ⟶ ∀ x22 : ο . x22) ⟶ (x3 = x10 ⟶ ∀ x22 : ο . x22) ⟶ (x4 = x10 ⟶ ∀ x22 : ο . x22) ⟶ (x5 = x10 ⟶ ∀ x22 : ο . x22) ⟶ (x6 = x10 ⟶ ∀ x22 : ο . x22) ⟶ (x7 = x10 ⟶ ∀ x22 : ο . x22) ⟶ (x8 = x10 ⟶ ∀ x22 : ο . x22) ⟶ (x9 = x10 ⟶ ∀ x22 : ο . x22) ⟶ (x1 = x11 ⟶ ∀ x22 : ο . x22) ⟶ (x2 = x11 ⟶ ∀ x22 : ο . x22) ⟶ (x3 = x11 ⟶ ∀ x22 : ο . x22) ⟶ (x4 = x11 ⟶ ∀ x22 : ο . x22) ⟶ (x5 = x11 ⟶ ∀ x22 : ο . x22) ⟶ (x6 = x11 ⟶ ∀ x22 : ο . x22) ⟶ (x7 = x11 ⟶ ∀ x22 : ο . x22) ⟶ (x8 = x11 ⟶ ∀ x22 : ο . x22) ⟶ (x9 = x11 ⟶ ∀ x22 : ο . x22) ⟶ (x10 = x11 ⟶ ∀ x22 : ο . x22) ⟶ (x1 = x12 ⟶ ∀ x22 : ο . x22) ⟶ (x2 = x12 ⟶ ∀ x22 : ο . x22) ⟶ (x3 = x12 ⟶ ∀ x22 : ο . x22) ⟶ (x4 = x12 ⟶ ∀ x22 : ο . x22) ⟶ (x5 = x12 ⟶ ∀ x22 : ο . x22) ⟶ (x6 = x12 ⟶ ∀ x22 : ο . x22) ⟶ (x7 = x12 ⟶ ∀ x22 : ο . x22) ⟶ (x8 = x12 ⟶ ∀ x22 : ο . x22) ⟶ (x9 = x12 ⟶ ∀ x22 : ο . x22) ⟶ (x10 = x12 ⟶ ∀ x22 : ο . x22) ⟶ (x11 = x12 ⟶ ∀ x22 : ο . x22) ⟶ (x1 = x13 ⟶ ∀ x22 : ο . x22) ⟶ (x2 = x13 ⟶ ∀ x22 : ο . x22) ⟶ (x3 = x13 ⟶ ∀ x22 : ο . x22) ⟶ (x4 = x13 ⟶ ∀ x22 : ο . x22) ⟶ (x5 = x13 ⟶ ∀ x22 : ο . x22) ⟶ (x6 = x13 ⟶ ∀ x22 : ο . x22) ⟶ (x7 = x13 ⟶ ∀ x22 : ο . x22) ⟶ (x8 = x13 ⟶ ∀ x22 : ο . x22) ⟶ (x9 = x13 ⟶ ∀ x22 : ο . x22) ⟶ (x10 = x13 ⟶ ∀ x22 : ο . x22) ⟶ (x11 = x13 ⟶ ∀ x22 : ο . x22) ⟶ (x12 = x13 ⟶ ∀ x22 : ο . x22) ⟶ (x1 = x14 ⟶ ∀ x22 : ο . x22) ⟶ (x2 = x14 ⟶ ∀ x22 : ο . x22) ⟶ (x3 = x14 ⟶ ∀ x22 : ο . x22) ⟶ (x4 = x14 ⟶ ∀ x22 : ο . x22) ⟶ (x5 = x14 ⟶ ∀ x22 : ο . x22) ⟶ (x6 = x14 ⟶ ∀ x22 : ο . x22) ⟶ (x7 = x14 ⟶ ∀ x22 : ο . x22) ⟶ (x8 = x14 ⟶ ∀ x22 : ο . x22) ⟶ (x9 = x14 ⟶ ∀ x22 : ο . x22) ⟶ (x10 = x14 ⟶ ∀ x22 : ο . x22) ⟶ (x11 = x14 ⟶ ∀ x22 : ο . x22) ⟶ (x12 = x14 ⟶ ∀ x22 : ο . x22) ⟶ (x13 = x14 ⟶ ∀ x22 : ο . x22) ⟶ (x1 = x15 ⟶ ∀ x22 : ο . x22) ⟶ (x2 = x15 ⟶ ∀ x22 : ο . x22) ⟶ (x3 = x15 ⟶ ∀ x22 : ο . x22) ⟶ (x4 = x15 ⟶ ∀ x22 : ο . x22) ⟶ (x5 = x15 ⟶ ∀ x22 : ο . x22) ⟶ (x6 = x15 ⟶ ∀ x22 : ο . x22) ⟶ (x7 = x15 ⟶ ∀ x22 : ο . x22) ⟶ (x8 = x15 ⟶ ∀ x22 : ο . x22) ⟶ (x9 = x15 ⟶ ∀ x22 : ο . x22) ⟶ (x10 = x15 ⟶ ∀ x22 : ο . x22) ⟶ (x11 = x15 ⟶ ∀ x22 : ο . x22) ⟶ (x12 = x15 ⟶ ∀ x22 : ο . x22) ⟶ (x13 = x15 ⟶ ∀ x22 : ο . x22) ⟶ (x14 = x15 ⟶ ∀ x22 : ο . x22) ⟶ (x1 = x16 ⟶ ∀ x22 : ο . x22) ⟶ (x2 = x16 ⟶ ∀ x22 : ο . x22) ⟶ (x3 = x16 ⟶ ∀ x22 : ο . x22) ⟶ (x4 = x16 ⟶ ∀ x22 : ο . x22) ⟶ (x5 = x16 ⟶ ∀ x22 : ο . x22) ⟶ (x6 = x16 ⟶ ∀ x22 : ο . x22) ⟶ (x7 = x16 ⟶ ∀ x22 : ο . x22) ⟶ (x8 = x16 ⟶ ∀ x22 : ο . x22) ⟶ (x9 = x16 ⟶ ∀ x22 : ο . x22) ⟶ (x10 = x16 ⟶ ∀ x22 : ο . x22) ⟶ (x11 = x16 ⟶ ∀ x22 : ο . x22) ⟶ (x12 = x16 ⟶ ∀ x22 : ο . x22) ⟶ (x13 = x16 ⟶ ∀ x22 : ο . x22) ⟶ (x14 = x16 ⟶ ∀ x22 : ο . x22) ⟶ (x15 = x16 ⟶ ∀ x22 : ο . x22) ⟶ (x1 = x17 ⟶ ∀ x22 : ο . x22) ⟶ (x2 = x17 ⟶ ∀ x22 : ο . x22) ⟶ (x3 = x17 ⟶ ∀ x22 : ο . x22) ⟶ (x4 = x17 ⟶ ∀ x22 : ο . x22) ⟶ (x5 = x17 ⟶ ∀ x22 : ο . x22) ⟶ (x6 = x17 ⟶ ∀ x22 : ο . x22) ⟶ (x7 = x17 ⟶ ∀ x22 : ο . x22) ⟶ (x8 = x17 ⟶ ∀ x22 : ο . x22) ⟶ (x9 = x17 ⟶ ∀ x22 : ο . x22) ⟶ (x10 = x17 ⟶ ∀ x22 : ο . x22) ⟶ (x11 = x17 ⟶ ∀ x22 : ο . x22) ⟶ (x12 = x17 ⟶ ∀ x22 : ο . x22) ⟶ (x13 = x17 ⟶ ∀ x22 : ο . x22) ⟶ (x14 = x17 ⟶ ∀ x22 : ο . x22) ⟶ (x15 = x17 ⟶ ∀ x22 : ο . x22) ⟶ (x16 = x17 ⟶ ∀ x22 : ο . x22) ⟶ (x1 = x18 ⟶ ∀ x22 : ο . x22) ⟶ (x2 = x18 ⟶ ∀ x22 : ο . x22) ⟶ (x3 = x18 ⟶ ∀ x22 : ο . x22) ⟶ (x4 = x18 ⟶ ∀ x22 : ο . x22) ⟶ (x5 = x18 ⟶ ∀ x22 : ο . x22) ⟶ (x6 = x18 ⟶ ∀ x22 : ο . x22) ⟶ (x7 = x18 ⟶ ∀ x22 : ο . x22) ⟶ (x8 = x18 ⟶ ∀ x22 : ο . x22) ⟶ (x9 = x18 ⟶ ∀ x22 : ο . x22) ⟶ (x10 = x18 ⟶ ∀ x22 : ο . x22) ⟶ (x11 = x18 ⟶ ∀ x22 : ο . x22) ⟶ (x12 = x18 ⟶ ∀ x22 : ο . x22) ⟶ (x13 = x18 ⟶ ∀ x22 : ο . x22) ⟶ (x14 = x18 ⟶ ∀ x22 : ο . x22) ⟶ (x15 = x18 ⟶ ∀ x22 : ο . x22) ⟶ (x16 = x18 ⟶ ∀ x22 : ο . x22) ⟶ (x17 = x18 ⟶ ∀ x22 : ο . x22) ⟶ (x1 = x19 ⟶ ∀ x22 : ο . x22) ⟶ (x2 = x19 ⟶ ∀ x22 : ο . x22) ⟶ (x3 = x19 ⟶ ∀ x22 : ο . x22) ⟶ (x4 = x19 ⟶ ∀ x22 : ο . x22) ⟶ (x5 = x19 ⟶ ∀ x22 : ο . x22) ⟶ (x6 = x19 ⟶ ∀ x22 : ο . x22) ⟶ (x7 = x19 ⟶ ∀ x22 : ο . x22) ⟶ (x8 = x19 ⟶ ∀ x22 : ο . x22) ⟶ (x9 = x19 ⟶ ∀ x22 : ο . x22) ⟶ (x10 = x19 ⟶ ∀ x22 : ο . x22) ⟶ (x11 = x19 ⟶ ∀ x22 : ο . x22) ⟶ (x12 = x19 ⟶ ∀ x22 : ο . x22) ⟶ (x13 = x19 ⟶ ∀ x22 : ο . x22) ⟶ (x14 = x19 ⟶ ∀ x22 : ο . x22) ⟶ (x15 = x19 ⟶ ∀ x22 : ο . x22) ⟶ (x16 = x19 ⟶ ∀ x22 : ο . x22) ⟶ (x17 = x19 ⟶ ∀ x22 : ο . x22) ⟶ (x18 = x19 ⟶ ∀ x22 : ο . x22) ⟶ (x1 = x20 ⟶ ∀ x22 : ο . x22) ⟶ (x2 = x20 ⟶ ∀ x22 : ο . x22) ⟶ (x3 = x20 ⟶ ∀ x22 : ο . x22) ⟶ (x4 = x20 ⟶ ∀ x22 : ο . x22) ⟶ (x5 = x20 ⟶ ∀ x22 : ο . x22) ⟶ (x6 = x20 ⟶ ∀ x22 : ο . x22) ⟶ (x7 = x20 ⟶ ∀ x22 : ο . x22) ⟶ (x8 = x20 ⟶ ∀ x22 : ο . x22) ⟶ (x9 = x20 ⟶ ∀ x22 : ο . x22) ⟶ (x10 = x20 ⟶ ∀ x22 : ο . x22) ⟶ (x11 = x20 ⟶ ∀ x22 : ο . x22) ⟶ (x12 = x20 ⟶ ∀ x22 : ο . x22) ⟶ (x13 = x20 ⟶ ∀ x22 : ο . x22) ⟶ (x14 = x20 ⟶ ∀ x22 : ο . x22) ⟶ (x15 = x20 ⟶ ∀ x22 : ο . x22) ⟶ (x16 = x20 ⟶ ∀ x22 : ο . x22) ⟶ (x17 = x20 ⟶ ∀ x22 : ο . x22) ⟶ (x18 = x20 ⟶ ∀ x22 : ο . x22) ⟶ (x19 = x20 ⟶ ∀ x22 : ο . x22) ⟶ (x1 = x21 ⟶ ∀ x22 : ο . x22) ⟶ (x2 = x21 ⟶ ∀ x22 : ο . x22) ⟶ (x3 = x21 ⟶ ∀ x22 : ο . x22) ⟶ (x4 = x21 ⟶ ∀ x22 : ο . x22) ⟶ (x5 = x21 ⟶ ∀ x22 : ο . x22) ⟶ (x6 = x21 ⟶ ∀ x22 : ο . x22) ⟶ (x7 = x21 ⟶ ∀ x22 : ο . x22) ⟶ (x8 = x21 ⟶ ∀ x22 : ο . x22) ⟶ (x9 = x21 ⟶ ∀ x22 : ο . x22) ⟶ (x10 = x21 ⟶ ∀ x22 : ο . x22) ⟶ (x11 = x21 ⟶ ∀ x22 : ο . x22) ⟶ ( |
|