Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrGh2../fafe3..
PUMws../826b5..
vout
PrGh2../fe7de.. 0.34 bars
TMLzy../8ba66.. ownership of 49006.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMZzi../c43ab.. ownership of de2d1.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMTWh../b3bc2.. ownership of dc6cf.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMNZn../45a35.. ownership of d69e5.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMbdV../87cd6.. ownership of 72690.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMXX5../1b3b0.. ownership of 45b44.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMFzy../5425d.. ownership of 936d9.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMJyD../1a18f.. ownership of d5768.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMd64../5d97b.. ownership of 9c6b9.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMHxB../10d18.. ownership of f8aa7.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMTD5../df3c5.. ownership of 5f5c5.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMaP4../1d453.. ownership of c7aff.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMY6m../48ac6.. ownership of 58a40.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMPbK../e7bcf.. ownership of c43bb.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMGrW../67bb2.. ownership of dd75c.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMQNg../d3db9.. ownership of a1cc1.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMWe3../d266b.. ownership of 79957.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMWw8../8168c.. ownership of 5ef6d.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMLip../4f5ff.. ownership of 125f1.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMK39../61599.. ownership of be250.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMGr3../ea3b9.. ownership of 6eadb.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMQCL../c0361.. ownership of 6809a.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMQ6s../e9319.. ownership of 7ce95.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMKrW../59cbf.. ownership of 137f8.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMJ5Q../4ac14.. ownership of 45945.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMFwZ../0a79b.. ownership of 8faf0.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMZY9../34b27.. ownership of 62658.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMEuU../b7c58.. ownership of cbfb7.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMRpc../5eb1f.. ownership of 57ba0.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMVGu../9e1cf.. ownership of 59e3f.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMNa9../0a556.. ownership of 5387a.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMW4c../1d7cf.. ownership of 8e794.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMF4P../5ab71.. ownership of 0f4ef.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMQz2../3443f.. ownership of 7938f.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMRtF../0afdf.. ownership of 1c0e1.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMHKV../bbc53.. ownership of f2377.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMQTt../57c7f.. ownership of 3e8fc.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMTdH../83024.. ownership of 3b7da.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMYmN../0ebbc.. ownership of 4ba5a.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMRkC../abfe2.. ownership of c390c.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMLNL../a3afb.. ownership of 024cd.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMaed../6bc92.. ownership of 10267.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMcGM../78dfa.. ownership of 5059f.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMFYK../d471f.. ownership of 14794.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMSNp../557ad.. ownership of c84ab.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMGFi../41fb2.. ownership of 4e486.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMFYM../df240.. ownership of 55fb5.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMRgm../15a04.. ownership of 63c01.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMP44../a2df2.. ownership of 2cd8d.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMXCM../bb1bb.. ownership of 7ee20.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMQvN../eae50.. ownership of 66c4c.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMUnE../b1cea.. ownership of c0506.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMWFV../a8c8b.. ownership of f65a3.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMH3g../4bef8.. ownership of 266cf.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMbNX../b5301.. ownership of ec1a3.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMLMT../892a3.. ownership of b158c.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMTKs../c27b9.. ownership of 68978.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMYA6../f7b79.. ownership of ea08c.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMEix../27618.. ownership of 2fb6a.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMGLs../a0193.. ownership of 3e43f.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMcXy../e0c27.. ownership of e4125.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMTrG../90e93.. ownership of dcf57.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMUWd../a55ba.. ownership of b606c.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMXv4../a1cf3.. ownership of cb7ab.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMLdh../98e7f.. ownership of 081b4.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMaA4../66ff9.. ownership of 1db15.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMKAC../fc988.. ownership of 7f6e5.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMPhz../31ac3.. ownership of 71e1a.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMQ4w../23e7e.. ownership of 793b1.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMWcN../3c601.. ownership of 07ee6.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMGEQ../756ff.. ownership of 1342d.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMN2T../c7e03.. ownership of 584a9.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMdfU../8f484.. ownership of 10e56.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMMUc../e852b.. ownership of 0cb20.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMb2Y../9c1f6.. ownership of 95305.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMHdD../2d8a9.. ownership of b9f4e.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMFRs../ad327.. ownership of 5cbb4.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMFYV../f00bb.. ownership of 3d057.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMPvm../b3404.. ownership of 973e2.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMSr8../7c5db.. ownership of d4b40.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMJpT../4c1c3.. ownership of 2cb62.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMc8K../1d43d.. ownership of 795e2.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMSf1../c8a55.. ownership of a6f30.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMHdF../4a70c.. ownership of d7565.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMcJT../613fc.. ownership of a8f5c.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMV9p../e86fa.. ownership of a11d4.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMWH6../ba5ef.. ownership of 26f87.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMcah../9a2f7.. ownership of 07086.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMa74../ad422.. ownership of 4ebd3.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMHam../707eb.. ownership of 9dfc2.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMVLw../8f697.. ownership of 3f606.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMEhr../bd7ce.. ownership of acf0f.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TML5c../08622.. ownership of 8f474.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMLyB../0fd89.. ownership of 5d020.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMZkf../15620.. ownership of 9b88c.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMVx1../e85d6.. ownership of e8157.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMbjd../68983.. ownership of 44b62.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMLaa../4d200.. ownership of 95791.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMYd8../fa62a.. ownership of 0f504.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMQMK../6400e.. ownership of d6f68.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMTg9../69b26.. ownership of 32259.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMJVd../95699.. ownership of bedc5.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMZej../de5d6.. ownership of f8f8d.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMdD8../0d46d.. ownership of 33599.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMG9P../8db9b.. ownership of 070ae.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMGYc../cb8f3.. ownership of 8085c.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMY5J../370d1.. ownership of c8074.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMWo7../8319c.. ownership of f35b6.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
PUdXV../67c6a.. doc published by PrCx1..
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition MetaFunctorMetaFunctor := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 : ι → ο . λ x5 : ι → ι → ι → ο . λ x6 : ι → ι . λ x7 : ι → ι → ι → ι → ι → ι . λ x8 : ι → ι . λ x9 : ι → ι → ι → ι . and (and (and (∀ x10 . x0 x10x4 (x8 x10)) (∀ x10 x11 x12 . x0 x10x0 x11x1 x10 x11 x12x5 (x8 x10) (x8 x11) (x9 x10 x11 x12))) (∀ x10 . x0 x10x9 x10 x10 (x2 x10) = x6 (x8 x10))) (∀ x10 x11 x12 x13 x14 . x0 x10x0 x11x0 x12x1 x10 x11 x13x1 x11 x12 x14x9 x10 x12 (x3 x10 x11 x12 x14 x13) = x7 (x8 x10) (x8 x11) (x8 x12) (x9 x11 x12 x14) (x9 x10 x11 x13))
Known and4Iand4I : ∀ x0 x1 x2 x3 : ο . x0x1x2x3and (and (and x0 x1) x2) x3
Theorem 2cb62..MetaFunctorI : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . (∀ x10 . x0 x10x4 (x8 x10))(∀ x10 x11 x12 . x0 x10x0 x11x1 x10 x11 x12x5 (x8 x10) (x8 x11) (x9 x10 x11 x12))(∀ x10 . x0 x10x9 x10 x10 (x2 x10) = x6 (x8 x10))(∀ x10 x11 x12 x13 x14 . x0 x10x0 x11x0 x12x1 x10 x11 x13x1 x11 x12 x14x9 x10 x12 (x3 x10 x11 x12 x14 x13) = x7 (x8 x10) (x8 x11) (x8 x12) (x9 x11 x12 x14) (x9 x10 x11 x13))MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 (proof)
Known and4Eand4E : ∀ x0 x1 x2 x3 : ο . and (and (and x0 x1) x2) x3∀ x4 : ο . (x0x1x2x3x4)x4
Theorem 973e2..MetaFunctorE : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x8 x9∀ x10 : ο . ((∀ x11 . x0 x11x4 (x8 x11))(∀ x11 x12 x13 . x0 x11x0 x12x1 x11 x12 x13x5 (x8 x11) (x8 x12) (x9 x11 x12 x13))(∀ x11 . x0 x11x9 x11 x11 (x2 x11) = x6 (x8 x11))(∀ x11 x12 x13 x14 x15 . x0 x11x0 x12x0 x13x1 x11 x12 x14x1 x12 x13 x15x9 x11 x13 (x3 x11 x12 x13 x15 x14) = x7 (x8 x11) (x8 x12) (x8 x13) (x9 x12 x13 x15) (x9 x11 x12 x14))x10)x10 (proof)
Param MetaCatMetaCat : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ο
Definition MetaFunctor_strictMetaFunctor_strict := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 : ι → ο . λ x5 : ι → ι → ι → ο . λ x6 : ι → ι . λ x7 : ι → ι → ι → ι → ι → ι . λ x8 : ι → ι . λ x9 : ι → ι → ι → ι . and (and (MetaCat x0 x1 x2 x3) (MetaCat x4 x5 x6 x7)) (MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x8 x9)
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Theorem 5cbb4..MetaFunctor_strict_I : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . MetaCat x0 x1 x2 x3MetaCat x4 x5 x6 x7MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x8 x9MetaFunctor_strict x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 (proof)
Known and3Eand3E : ∀ x0 x1 x2 : ο . and (and x0 x1) x2∀ x3 : ο . (x0x1x2x3)x3
Theorem 95305..MetaFunctor_strict_E : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . MetaFunctor_strict x0 x1 x2 x3 x4 x5 x6 x7 x8 x9∀ x10 : ο . (MetaCat x0 x1 x2 x3MetaCat x4 x5 x6 x7MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x8 x9x10)x10 (proof)
Definition MetaNatTrans_buggy := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 : ι → ο . λ x5 : ι → ι → ι → ο . λ x6 : ι → ι . λ x7 : ι → ι → ι → ι → ι → ι . λ x8 : ι → ι . λ x9 : ι → ι → ι → ι . λ x10 : ι → ι . λ x11 : ι → ι → ι → ι . λ x12 : ι → ι . and (∀ x13 . x0 x13x1 (x8 x13) (x10 x13) (x12 x13)) (∀ x13 x14 x15 . x0 x13x0 x14x1 x13 x14 x15x7 (x8 x13) (x10 x13) (x10 x14) (x11 x13 x14 x15) (x12 x13) = x7 (x8 x13) (x8 x14) (x10 x14) (x12 x14) (x9 x13 x14 x15))
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Theorem 10e56.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι . ∀ x12 : ι → ι . (∀ x13 . x0 x13x1 (x8 x13) (x10 x13) (x12 x13))(∀ x13 x14 x15 . x0 x13x0 x14x1 x13 x14 x15x7 (x8 x13) (x10 x13) (x10 x14) (x11 x13 x14 x15) (x12 x13) = x7 (x8 x13) (x8 x14) (x10 x14) (x12 x14) (x9 x13 x14 x15))MetaNatTrans_buggy x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 (proof)
Theorem 1342d.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι . ∀ x12 : ι → ι . MetaNatTrans_buggy x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12∀ x13 : ο . ((∀ x14 . x0 x14x1 (x8 x14) (x10 x14) (x12 x14))(∀ x14 x15 x16 . x0 x14x0 x15x1 x14 x15 x16x7 (x8 x14) (x10 x14) (x10 x15) (x11 x14 x15 x16) (x12 x14) = x7 (x8 x14) (x8 x15) (x10 x15) (x12 x15) (x9 x14 x15 x16))x13)x13 (proof)
Definition MetaNatTrans_buggy_strict := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 : ι → ο . λ x5 : ι → ι → ι → ο . λ x6 : ι → ι . λ x7 : ι → ι → ι → ι → ι → ι . λ x8 : ι → ι . λ x9 : ι → ι → ι → ι . λ x10 : ι → ι . λ x11 : ι → ι → ι → ι . λ x12 : ι → ι . and (and (and (and (MetaCat x0 x1 x2 x3) (MetaCat x4 x5 x6 x7)) (MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x8 x9)) (MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x10 x11)) (MetaNatTrans_buggy x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12)
Known and5Iand5I : ∀ x0 x1 x2 x3 x4 : ο . x0x1x2x3x4and (and (and (and x0 x1) x2) x3) x4
Theorem 793b1.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι . ∀ x12 : ι → ι . MetaCat x0 x1 x2 x3MetaCat x4 x5 x6 x7MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x8 x9MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x10 x11MetaNatTrans_buggy x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12MetaNatTrans_buggy_strict x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 (proof)
Known and5Eand5E : ∀ x0 x1 x2 x3 x4 : ο . and (and (and (and x0 x1) x2) x3) x4∀ x5 : ο . (x0x1x2x3x4x5)x5
Theorem 7f6e5.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι . ∀ x12 : ι → ι . MetaNatTrans_buggy_strict x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12∀ x13 : ο . (MetaCat x0 x1 x2 x3MetaCat x4 x5 x6 x7MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x8 x9MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x10 x11MetaNatTrans_buggy x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12x13)x13 (proof)
Param PiPi : ι(ιι) → ι
Definition setexpsetexp := λ x0 x1 . Pi x1 (λ x2 . x0)
Param lamSigma : ι(ιι) → ι
Definition lam_idlam_id := λ x0 . lam x0 (λ x1 . x1)
Param apap : ιιι
Definition lam_complam_comp := λ x0 x1 x2 . lam x0 (λ x3 . ap x1 (ap x2 x3))
Definition MetaFunctor_prop1idT := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 . x0 x4x1 x4 x4 (x2 x4)
Definition MetaFunctor_prop2compT := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 x5 x6 x7 x8 . x0 x4x0 x5x0 x6x1 x4 x5 x7x1 x5 x6 x8x1 x4 x6 (x3 x4 x5 x6 x8 x7)
Known 047c9..MetaCat_I : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . MetaFunctor_prop1 x0 x1 x2 x3MetaFunctor_prop2 x0 x1 x2 x3(∀ x4 x5 x6 . x0 x4x0 x5x1 x4 x5 x6x3 x4 x4 x5 x6 (x2 x4) = x6)(∀ x4 x5 x6 . x0 x4x0 x5x1 x4 x5 x6x3 x4 x5 x5 (x2 x5) x6 = x6)(∀ x4 x5 x6 x7 x8 x9 x10 . x0 x4x0 x5x0 x6x0 x7x1 x4 x5 x8x1 x5 x6 x9x1 x6 x7 x10x3 x4 x5 x7 (x3 x5 x6 x7 x10 x9) x8 = x3 x4 x6 x7 x10 (x3 x4 x5 x6 x9 x8))MetaCat x0 x1 x2 x3
Known lam_comp_id_Rlam_comp_id_R : ∀ x0 x1 x2 . x2setexp x1 x0lam_comp x0 x2 (lam_id x0) = x2
Known lam_comp_id_Llam_comp_id_L : ∀ x0 x1 x2 . x2setexp x1 x0lam_comp x0 (lam_id x1) x2 = x2
Known lam_comp_assoclam_comp_assoc : ∀ x0 x1 x2 . x2setexp x1 x0∀ x3 x4 . lam_comp x0 x4 (lam_comp x0 x3 x2) = lam_comp x0 (lam_comp x1 x4 x3) x2
Theorem 081b4..MetaCatConcrete : ∀ x0 : ι → ο . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ι → ο . (∀ x3 x4 x5 . x0 x3x0 x4x2 x3 x4 x5x5setexp (x1 x4) (x1 x3))(∀ x3 . x0 x3x2 x3 x3 (lam_id (x1 x3)))(∀ x3 x4 x5 x6 x7 . x0 x3x0 x4x0 x5x2 x3 x4 x6x2 x4 x5 x7x2 x3 x5 (lam_comp (x1 x3) x7 x6))MetaCat x0 x2 (λ x3 . lam_id (x1 x3)) (λ x3 x4 x5 . lam_comp (x1 x3)) (proof)
Definition TrueTrue := ∀ x0 : ο . x0x0
Definition HomSetSetHom := λ x0 x1 x2 . x2setexp x1 x0
Known TrueITrueI : True
Theorem b606c..MetaCatConcreteForgetful : ∀ x0 : ι → ο . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ι → ο . (∀ x3 x4 x5 . x0 x3x0 x4x2 x3 x4 x5x5setexp (x1 x4) (x1 x3))MetaFunctor x0 x2 (λ x3 . lam_id (x1 x3)) (λ x3 x4 x5 . lam_comp (x1 x3)) (λ x3 . True) HomSet lam_id (λ x3 x4 x5 . lam_comp x3) x1 (λ x3 x4 x5 . x5) (proof)
Known lam_id_exp_Inlam_id_exp_In : ∀ x0 . lam_id x0setexp x0 x0
Known lam_comp_exp_Inlam_comp_exp_In : ∀ x0 x1 x2 x3 . x3setexp x1 x0∀ x4 . x4setexp x2 x1lam_comp x0 x4 x3setexp x2 x0
Theorem e4125..MetaCatSet : MetaCat (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (proof)
Theorem 2fb6a..MetaCatHFSet : MetaCat (λ x0 . x0prim6 0) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (proof)
Theorem 68978..MetaCatSmallSet : MetaCat (λ x0 . x0prim6 (prim6 0)) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (proof)
Theorem ec1a3..MetaCatConcreteForgetful_strict : ∀ x0 : ι → ο . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ι → ο . (∀ x3 x4 x5 . x0 x3x0 x4x2 x3 x4 x5x5setexp (x1 x4) (x1 x3))(∀ x3 . x0 x3x2 x3 x3 (lam_id (x1 x3)))(∀ x3 x4 x5 x6 x7 . x0 x3x0 x4x0 x5x2 x3 x4 x6x2 x4 x5 x7x2 x3 x5 (lam_comp (x1 x3) x7 x6))MetaFunctor_strict x0 x2 (λ x3 . lam_id (x1 x3)) (λ x3 x4 x5 . lam_comp (x1 x3)) (λ x3 . True) HomSet lam_id (λ x3 x4 x5 . lam_comp x3) x1 (λ x3 x4 x5 . x5) (proof)
Param unpack_e_ounpack_e_o : ι(ιιο) → ο
Definition PtdSetHomHom_struct_e := λ x0 x1 x2 . unpack_e_o x0 (λ x3 x4 . unpack_e_o x1 (λ x5 x6 . and (x2setexp x5 x3) (ap x2 x4 = x6)))
Param unpack_u_ounpack_u_o : ι(ι(ιι) → ο) → ο
Definition UnaryFuncHomHom_struct_u := λ x0 x1 x2 . unpack_u_o x0 (λ x3 . λ x4 : ι → ι . unpack_u_o x1 (λ x5 . λ x6 : ι → ι . and (x2setexp x5 x3) (∀ x7 . x7x3ap x2 (x4 x7) = x6 (ap x2 x7))))
Param unpack_b_ounpack_b_o : ι(ι(ιιι) → ο) → ο
Definition MagmaHomHom_struct_b := λ x0 x1 x2 . unpack_b_o x0 (λ x3 . λ x4 : ι → ι → ι . unpack_b_o x1 (λ x5 . λ x6 : ι → ι → ι . and (x2setexp x5 x3) (∀ x7 . x7x3∀ x8 . x8x3ap x2 (x4 x7 x8) = x6 (ap x2 x7) (ap x2 x8))))
Param unpack_p_ounpack_p_o : ι(ι(ιο) → ο) → ο
Definition UnaryPredHomHom_struct_p := λ x0 x1 x2 . unpack_p_o x0 (λ x3 . λ x4 : ι → ο . unpack_p_o x1 (λ x5 . λ x6 : ι → ο . and (x2setexp x5 x3) (∀ x7 . x7x3x4 x7x6 (ap x2 x7))))
Param unpack_r_ounpack_r_o : ι(ι(ιιο) → ο) → ο
Definition BinRelnHomHom_struct_r := λ x0 x1 x2 . unpack_r_o x0 (λ x3 . λ x4 : ι → ι → ο . unpack_r_o x1 (λ x5 . λ x6 : ι → ι → ο . and (x2setexp x5 x3) (∀ x7 . x7x3∀ x8 . x8x3x4 x7 x8x6 (ap x2 x7) (ap x2 x8))))
Param unpack_c_ounpack_c_o : ι(ι((ιο) → ο) → ο) → ο
Definition PreContinuousHomHom_struct_c := λ x0 x1 x2 . unpack_c_o x0 (λ x3 . λ x4 : (ι → ο) → ο . unpack_c_o x1 (λ x5 . λ x6 : (ι → ο) → ο . and (x2setexp x5 x3) (∀ x7 : ι → ο . (∀ x8 . x7 x8x8x5)x6 x7x4 (λ x8 . and (x8x3) (x7 (ap x2 x8))))))
Param unpack_b_b_e_ounpack_b_b_e_o : ι(ι(ιιι) → (ιιι) → ιο) → ο
Definition Hom_b_b_eHom_struct_b_b_e := λ x0 x1 x2 . unpack_b_b_e_o x0 (λ x3 . λ x4 x5 : ι → ι → ι . λ x6 . unpack_b_b_e_o x1 (λ x7 . λ x8 x9 : ι → ι → ι . λ x10 . and (and (and (x2setexp x7 x3) (∀ x11 . x11x3∀ x12 . x12x3ap x2 (x4 x11 x12) = x8 (ap x2 x11) (ap x2 x12))) (∀ x11 . x11x3∀ x12 . x12x3ap x2 (x5 x11 x12) = x9 (ap x2 x11) (ap x2 x12))) (ap x2 x6 = x10)))
Param unpack_b_b_e_e_ounpack_b_b_e_e_o : ι(ι(ιιι) → (ιιι) → ιιο) → ο
Definition Hom_b_b_e_eHom_struct_b_b_e_e := λ x0 x1 x2 . unpack_b_b_e_e_o x0 (λ x3 . λ x4 x5 : ι → ι → ι . λ x6 x7 . unpack_b_b_e_e_o x1 (λ x8 . λ x9 x10 : ι → ι → ι . λ x11 x12 . and (and (and (and (x2setexp x8 x3) (∀ x13 . x13x3∀ x14 . x14x3ap x2 (x4 x13 x14) = x9 (ap x2 x13) (ap x2 x14))) (∀ x13 . x13x3∀ x14 . x14x3ap x2 (x5 x13 x14) = x10 (ap x2 x13) (ap x2 x14))) (ap x2 x6 = x11)) (ap x2 x7 = x12)))
Param unpack_b_b_r_e_e_ounpack_b_b_r_e_e_o : ι(ι(ιιι) → (ιιι) → (ιιο) → ιιο) → ο
Definition Hom_b_b_r_e_eHom_struct_b_b_r_e_e := λ x0 x1 x2 . unpack_b_b_r_e_e_o x0 (λ x3 . λ x4 x5 : ι → ι → ι . λ x6 : ι → ι → ο . λ x7 x8 . unpack_b_b_r_e_e_o x1 (λ x9 . λ x10 x11 : ι → ι → ι . λ x12 : ι → ι → ο . λ x13 x14 . and (and (and (and (and (x2setexp x9 x3) (∀ x15 . x15x3∀ x16 . x16x3ap x2 (x4 x15 x16) = x10 (ap x2 x15) (ap x2 x16))) (∀ x15 . x15x3∀ x16 . x16x3ap x2 (x5 x15 x16) = x11 (ap x2 x15) (ap x2 x16))) (∀ x15 . x15x3∀ x16 . x16x3x6 x15 x16x12 (ap x2 x15) (ap x2 x16))) (ap x2 x7 = x13)) (ap x2 x8 = x14)))
Param pack_epack_e : ιιι
Known unpack_e_o_equnpack_e_o_eq : ∀ x0 : ι → ι → ο . ∀ x1 x2 . unpack_e_o (pack_e x1 x2) x0 = x0 x1 x2
Theorem f65a3..Hom_struct_e_pack : ∀ x0 x1 x2 x3 x4 . PtdSetHom (pack_e x0 x2) (pack_e x1 x3) x4 = and (x4setexp x1 x0) (ap x4 x2 = x3) (proof)
Param pack_upack_u : ι(ιι) → ι
Known unpack_u_o_equnpack_u_o_eq : ∀ x0 : ι → (ι → ι) → ο . ∀ x1 . ∀ x2 : ι → ι . (∀ x3 : ι → ι . (∀ x4 . x4x1x2 x4 = x3 x4)x0 x1 x3 = x0 x1 x2)unpack_u_o (pack_u x1 x2) x0 = x0 x1 x2
Known prop_ext_2prop_ext_2 : ∀ x0 x1 : ο . (x0x1)(x1x0)x0 = x1
Known ap_Piap_Pi : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2Pi x0 x1x3x0ap x2 x3x1 x3
Theorem 66c4c..Hom_struct_u_pack : ∀ x0 x1 . ∀ x2 x3 : ι → ι . ∀ x4 . UnaryFuncHom (pack_u x0 x2) (pack_u x1 x3) x4 = and (x4setexp x1 x0) (∀ x6 . x6x0ap x4 (x2 x6) = x3 (ap x4 x6)) (proof)
Param pack_bpack_b : ιCT2 ι
Known unpack_b_o_equnpack_b_o_eq : ∀ x0 : ι → (ι → ι → ι) → ο . ∀ x1 . ∀ x2 : ι → ι → ι . (∀ x3 : ι → ι → ι . (∀ x4 . x4x1∀ x5 . x5x1x2 x4 x5 = x3 x4 x5)x0 x1 x3 = x0 x1 x2)unpack_b_o (pack_b x1 x2) x0 = x0 x1 x2
Theorem 2cd8d..Hom_struct_b_pack : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 . MagmaHom (pack_b x0 x2) (pack_b x1 x3) x4 = and (x4setexp x1 x0) (∀ x6 . x6x0∀ x7 . x7x0ap x4 (x2 x6 x7) = x3 (ap x4 x6) (ap x4 x7)) (proof)
Param pack_ppack_p : ι(ιο) → ι
Param iffiff : οοο
Known unpack_p_o_equnpack_p_o_eq : ∀ x0 : ι → (ι → ο) → ο . ∀ x1 . ∀ x2 : ι → ο . (∀ x3 : ι → ο . (∀ x4 . x4x1iff (x2 x4) (x3 x4))x0 x1 x3 = x0 x1 x2)unpack_p_o (pack_p x1 x2) x0 = x0 x1 x2
Known iffELiffEL : ∀ x0 x1 : ο . iff x0 x1x0x1
Known iffERiffER : ∀ x0 x1 : ο . iff x0 x1x1x0
Theorem 55fb5..Hom_struct_p_pack : ∀ x0 x1 . ∀ x2 x3 : ι → ο . ∀ x4 . UnaryPredHom (pack_p x0 x2) (pack_p x1 x3) x4 = and (x4setexp x1 x0) (∀ x6 . x6x0x2 x6x3 (ap x4 x6)) (proof)
Param pack_rpack_r : ι(ιιο) → ι
Known unpack_r_o_equnpack_r_o_eq : ∀ x0 : ι → (ι → ι → ο) → ο . ∀ x1 . ∀ x2 : ι → ι → ο . (∀ x3 : ι → ι → ο . (∀ x4 . x4x1∀ x5 . x5x1iff (x2 x4 x5) (x3 x4 x5))x0 x1 x3 = x0 x1 x2)unpack_r_o (pack_r x1 x2) x0 = x0 x1 x2
Theorem c84ab..Hom_struct_r_pack : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ο . ∀ x4 . BinRelnHom (pack_r x0 x2) (pack_r x1 x3) x4 = and (x4setexp x1 x0) (∀ x6 . x6x0∀ x7 . x7x0x2 x6 x7x3 (ap x4 x6) (ap x4 x7)) (proof)
Param pack_cpack_c : ι((ιο) → ο) → ι
Known unpack_c_o_equnpack_c_o_eq : ∀ x0 : ι → ((ι → ο) → ο) → ο . ∀ x1 . ∀ x2 : (ι → ο) → ο . (∀ x3 : (ι → ο) → ο . (∀ x4 : ι → ο . (∀ x5 . x4 x5x5x1)iff (x2 x4) (x3 x4))x0 x1 x3 = x0 x1 x2)unpack_c_o (pack_c x1 x2) x0 = x0 x1 x2
Known andELandEL : ∀ x0 x1 : ο . and x0 x1x0
Theorem 5059f..Hom_struct_c_pack : ∀ x0 x1 . ∀ x2 x3 : (ι → ο) → ο . ∀ x4 . PreContinuousHom (pack_c x0 x2) (pack_c x1 x3) x4 = and (x4setexp x1 x0) (∀ x6 : ι → ο . (∀ x7 . x6 x7x7x1)x3 x6x2 (λ x7 . and (x7x0) (x6 (ap x4 x7)))) (proof)
Param pack_b_b_epack_b_b_e : ι(ιιι) → (ιιι) → ιι
Known unpack_b_b_e_o_equnpack_b_b_e_o_eq : ∀ x0 : ι → (ι → ι → ι)(ι → ι → ι)ι → ο . ∀ x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 . (∀ x5 : ι → ι → ι . (∀ x6 . x6x1∀ x7 . x7x1x2 x6 x7 = x5 x6 x7)∀ x6 : ι → ι → ι . (∀ x7 . x7x1∀ x8 . x8x1x3 x7 x8 = x6 x7 x8)x0 x1 x5 x6 x4 = x0 x1 x2 x3 x4)unpack_b_b_e_o (pack_b_b_e x1 x2 x3 x4) x0 = x0 x1 x2 x3 x4
Theorem 024cd..Hom_struct_b_b_e_pack : ∀ x0 x1 . ∀ x2 x3 x4 x5 : ι → ι → ι . ∀ x6 x7 x8 . Hom_b_b_e (pack_b_b_e x0 x2 x3 x6) (pack_b_b_e x1 x4 x5 x7) x8 = and (and (and (x8setexp x1 x0) (∀ x10 . x10x0∀ x11 . x11x0ap x8 (x2 x10 x11) = x4 (ap x8 x10) (ap x8 x11))) (∀ x10 . x10x0∀ x11 . x11x0ap x8 (x3 x10 x11) = x5 (ap x8 x10) (ap x8 x11))) (ap x8 x6 = x7) (proof)
Param pack_b_b_e_epack_b_b_e_e : ι(ιιι) → (ιιι) → ιιι
Known unpack_b_b_e_e_o_equnpack_b_b_e_e_o_eq : ∀ x0 : ι → (ι → ι → ι)(ι → ι → ι)ι → ι → ο . ∀ x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 x5 . (∀ x6 : ι → ι → ι . (∀ x7 . x7x1∀ x8 . x8x1x2 x7 x8 = x6 x7 x8)∀ x7 : ι → ι → ι . (∀ x8 . x8x1∀ x9 . x9x1x3 x8 x9 = x7 x8 x9)x0 x1 x6 x7 x4 x5 = x0 x1 x2 x3 x4 x5)unpack_b_b_e_e_o (pack_b_b_e_e x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5
Theorem 4ba5a..Hom_struct_b_b_e_e_pack : ∀ x0 x1 . ∀ x2 x3 x4 x5 : ι → ι → ι . ∀ x6 x7 x8 x9 x10 . Hom_b_b_e_e (pack_b_b_e_e x0 x2 x3 x6 x7) (pack_b_b_e_e x1 x4 x5 x8 x9) x10 = and (and (and (and (x10setexp x1 x0) (∀ x12 . x12x0∀ x13 . x13x0ap x10 (x2 x12 x13) = x4 (ap x10 x12) (ap x10 x13))) (∀ x12 . x12x0∀ x13 . x13x0ap x10 (x3 x12 x13) = x5 (ap x10 x12) (ap x10 x13))) (ap x10 x6 = x8)) (ap x10 x7 = x9) (proof)
Param pack_b_b_r_e_epack_b_b_r_e_e : ι(ιιι) → (ιιι) → (ιιο) → ιιι
Known unpack_b_b_r_e_e_o_equnpack_b_b_r_e_e_o_eq : ∀ x0 : ι → (ι → ι → ι)(ι → ι → ι)(ι → ι → ο)ι → ι → ο . ∀ x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 x6 . (∀ x7 : ι → ι → ι . (∀ x8 . x8x1∀ x9 . x9x1x2 x8 x9 = x7 x8 x9)∀ x8 : ι → ι → ι . (∀ x9 . x9x1∀ x10 . x10x1x3 x9 x10 = x8 x9 x10)∀ x9 : ι → ι → ο . (∀ x10 . x10x1∀ x11 . x11x1iff (x4 x10 x11) (x9 x10 x11))x0 x1 x7 x8 x9 x5 x6 = x0 x1 x2 x3 x4 x5 x6)unpack_b_b_r_e_e_o (pack_b_b_r_e_e x1 x2 x3 x4 x5 x6) x0 = x0 x1 x2 x3 x4 x5 x6
Known and6Eand6E : ∀ x0 x1 x2 x3 x4 x5 : ο . and (and (and (and (and x0 x1) x2) x3) x4) x5∀ x6 : ο . (x0x1x2x3x4x5x6)x6
Known and6Iand6I : ∀ x0 x1 x2 x3 x4 x5 : ο . x0x1x2x3x4x5and (and (and (and (and x0 x1) x2) x3) x4) x5
Theorem 3e8fc..Hom_struct_b_b_r_e_e_pack : ∀ x0 x1 . ∀ x2 x3 x4 x5 : ι → ι → ι . ∀ x6 x7 : ι → ι → ο . ∀ x8 x9 x10 x11 x12 . Hom_b_b_r_e_e (pack_b_b_r_e_e x0 x2 x3 x6 x8 x9) (pack_b_b_r_e_e x1 x4 x5 x7 x10 x11) x12 = and (and (and (and (and (x12setexp x1 x0) (∀ x14 . x14x0∀ x15 . x15x0ap x12 (x2 x14 x15) = x4 (ap x12 x14) (ap x12 x15))) (∀ x14 . x14x0∀ x15 . x15x0ap x12 (x3 x14 x15) = x5 (ap x12 x14) (ap x12 x15))) (∀ x14 . x14x0∀ x15 . x15x0x6 x14 x15x7 (ap x12 x14) (ap x12 x15))) (ap x12 x8 = x10)) (ap x12 x9 = x11) (proof)
Definition struct_estruct_e := λ x0 . ∀ x1 : ι → ο . (∀ x2 x3 . x3x2x1 (pack_e x2 x3))x1 x0
Known pack_e_0_eq2pack_e_0_eq2 : ∀ x0 x1 . x0 = ap (pack_e x0 x1) 0
Known betabeta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0ap (lam x0 x1) x2 = x1 x2
Theorem 1c0e1..MetaCat_struct_e_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_e x1)MetaCat x0 PtdSetHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0)) (proof)
Theorem 0f4ef..MetaCat_struct_e_Forgetful_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_e x1)MetaFunctor x0 PtdSetHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0)) (λ x1 . True) HomSet lam_id (λ x1 x2 x3 . lam_comp x1) (λ x1 . ap x1 0) (λ x1 x2 x3 . x3) (proof)
Definition struct_pstruct_p := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ο . x1 (pack_p x2 x3))x1 x0
Known pack_p_0_eq2pack_p_0_eq2 : ∀ x0 . ∀ x1 : ι → ο . x0 = ap (pack_p x0 x1) 0
Theorem 5387a..MetaCat_struct_p_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_p x1)MetaCat x0 UnaryPredHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0)) (proof)
Theorem 57ba0..MetaCat_struct_p_Forgetful_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_p x1)MetaFunctor x0 UnaryPredHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0)) (λ x1 . True) HomSet lam_id (λ x1 x2 x3 . lam_comp x1) (λ x1 . ap x1 0) (λ x1 x2 x3 . x3) (proof)
Definition struct_rstruct_r := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ο . x1 (pack_r x2 x3))x1 x0
Known pack_r_0_eq2pack_r_0_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ο . x2 x0 (ap (pack_r x0 x1) 0)x2 (ap (pack_r x0 x1) 0) x0
Theorem 62658..MetaCat_struct_r_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_r x1)MetaCat x0 BinRelnHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0)) (proof)
Theorem 45945..MetaCat_struct_r_Forgetful_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_r x1)MetaFunctor x0 BinRelnHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0)) (λ x1 . True) HomSet lam_id (λ x1 x2 x3 . lam_comp x1) (λ x1 . ap x1 0) (λ x1 x2 x3 . x3) (proof)
Definition struct_ustruct_u := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι . (∀ x4 . x4x2x3 x4x2)x1 (pack_u x2 x3))x1 x0
Known pack_u_0_eq2pack_u_0_eq2 : ∀ x0 . ∀ x1 : ι → ι . x0 = ap (pack_u x0 x1) 0
Theorem 7ce95..MetaCat_struct_u_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_u x1)MetaCat x0 UnaryFuncHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0)) (proof)
Theorem 6eadb..MetaCat_struct_u_Forgetful_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_u x1)MetaFunctor x0 UnaryFuncHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0)) (λ x1 . True) HomSet lam_id (λ x1 x2 x3 . lam_comp x1) (λ x1 . ap x1 0) (λ x1 x2 x3 . x3) (proof)
Definition struct_bstruct_b := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . x4x2∀ x5 . x5x2x3 x4 x5x2)x1 (pack_b x2 x3))x1 x0
Known pack_b_0_eq2pack_b_0_eq2 : ∀ x0 . ∀ x1 : ι → ι → ι . x0 = ap (pack_b x0 x1) 0
Theorem 125f1..MetaCat_struct_b_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_b x1)MetaCat x0 MagmaHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0)) (proof)
Theorem 79957..MetaCat_struct_b_Forgetful_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_b x1)MetaFunctor x0 MagmaHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0)) (λ x1 . True) HomSet lam_id (λ x1 x2 x3 . lam_comp x1) (λ x1 . ap x1 0) (λ x1 x2 x3 . x3) (proof)
Definition struct_cstruct_c := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : (ι → ο) → ο . x1 (pack_c x2 x3))x1 x0
Known pack_c_0_eq2pack_c_0_eq2 : ∀ x0 . ∀ x1 : (ι → ο) → ο . x0 = ap (pack_c x0 x1) 0
Known pred_ext_2pred_ext_2 : ∀ x0 x1 : ι → ο . (∀ x2 . x0 x2x1 x2)(∀ x2 . x1 x2x0 x2)x0 = x1
Theorem dd75c..MetaCat_struct_c_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_c x1)MetaCat x0 PreContinuousHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0)) (proof)
Theorem 58a40..MetaCat_struct_c_Forgetful_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_c x1)MetaFunctor x0 PreContinuousHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0)) (λ x1 . True) HomSet lam_id (λ x1 x2 x3 . lam_comp x1) (λ x1 . ap x1 0) (λ x1 x2 x3 . x3) (proof)
Definition struct_b_b_estruct_b_b_e := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . x4x2∀ x5 . x5x2x3 x4 x5x2)∀ x4 : ι → ι → ι . (∀ x5 . x5x2∀ x6 . x6x2x4 x5 x6x2)∀ x5 . x5x2x1 (pack_b_b_e x2 x3 x4 x5))x1 x0
Known pack_b_b_e_0_eq2pack_b_b_e_0_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 . x0 = ap (pack_b_b_e x0 x1 x2 x3) 0
Theorem 5f5c5..MetaCat_struct_b_b_e_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_b_b_e x1)MetaCat x0 Hom_b_b_e (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0)) (proof)
Theorem 9c6b9..MetaCat_struct_b_b_e_Forgetful_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_b_b_e x1)MetaFunctor x0 Hom_b_b_e (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0)) (λ x1 . True) HomSet lam_id (λ x1 x2 x3 . lam_comp x1) (λ x1 . ap x1 0) (λ x1 x2 x3 . x3) (proof)
Definition struct_b_b_e_estruct_b_b_e_e := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . x4x2∀ x5 . x5x2x3 x4 x5x2)∀ x4 : ι → ι → ι . (∀ x5 . x5x2∀ x6 . x6x2x4 x5 x6x2)∀ x5 . x5x2∀ x6 . x6x2x1 (pack_b_b_e_e x2 x3 x4 x5 x6))x1 x0
Known pack_b_b_e_e_0_eq2pack_b_b_e_e_0_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 . x0 = ap (pack_b_b_e_e x0 x1 x2 x3 x4) 0
Theorem 936d9..MetaCat_struct_b_b_e_e_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_b_b_e_e x1)MetaCat x0 Hom_b_b_e_e (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0)) (proof)
Theorem 72690..MetaCat_struct_b_b_e_e_Forgetful_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_b_b_e_e x1)MetaFunctor x0 Hom_b_b_e_e (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0)) (λ x1 . True) HomSet lam_id (λ x1 x2 x3 . lam_comp x1) (λ x1 . ap x1 0) (λ x1 x2 x3 . x3) (proof)
Definition struct_b_b_r_e_estruct_b_b_r_e_e := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . x4x2∀ x5 . x5x2x3 x4 x5x2)∀ x4 : ι → ι → ι . (∀ x5 . x5x2∀ x6 . x6x2x4 x5 x6x2)∀ x5 : ι → ι → ο . ∀ x6 . x6x2∀ x7 . x7x2x1 (pack_b_b_r_e_e x2 x3 x4 x5 x6 x7))x1 x0
Known pack_b_b_r_e_e_0_eq2pack_b_b_r_e_e_0_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 x5 . x0 = ap (pack_b_b_r_e_e x0 x1 x2 x3 x4 x5) 0
Theorem dc6cf..MetaCat_struct_b_b_r_e_e_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_b_b_r_e_e x1)MetaCat x0 Hom_b_b_r_e_e (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0)) (proof)
Theorem 49006..MetaCat_struct_b_b_r_e_e_Forgetful_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_b_b_r_e_e x1)MetaFunctor x0 Hom_b_b_r_e_e (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0)) (λ x1 . True) HomSet lam_id (λ x1 x2 x3 . lam_comp x1) (λ x1 . ap x1 0) (λ x1 x2 x3 . x3) (proof)