Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrEvg..
/
60f72..
PUVsb..
/
c21fc..
vout
PrEvg..
/
aa9b5..
0.37 bars
TMVhD..
/
58232..
ownership of
1dd60..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJ4e..
/
6f777..
ownership of
6b557..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUWd..
/
0461d..
ownership of
90489..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUfe..
/
3346e..
ownership of
9483e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQVL..
/
c40b1..
ownership of
76e10..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMK8Q..
/
2c012..
ownership of
1f3a0..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
PURWg..
/
cd713..
doc published by
PrGxv..
Param
de327..
:
(
ι
→
ο
) →
ι
→
ι
→
ο
Param
56103..
:
(
ι
→
ι
) →
ι
Param
57d6a..
:
ι
→
ι
→
ι
Definition
707bb..
:=
λ x0 :
ι → ο
.
λ x1 .
∀ x2 :
(
ι → ο
)
→
ι → ο
.
(
∀ x3 :
ι → ο
.
∀ x4 .
x3
x4
⟶
x2
x3
x4
)
⟶
(
∀ x3 :
ι → ο
.
∀ x4 :
ι → ι
.
(
∀ x5 .
x2
(
de327..
x3
x5
)
(
x4
x5
)
)
⟶
x2
x3
(
56103..
x4
)
)
⟶
(
∀ x3 :
ι → ο
.
∀ x4 x5 .
x2
x3
x4
⟶
x2
x3
x5
⟶
x2
x3
(
57d6a..
x4
x5
)
)
⟶
x2
x0
x1
Known
62e33..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι → ι
.
(
∀ x2 .
707bb..
(
de327..
x0
x2
)
(
x1
x2
)
)
⟶
707bb..
x0
(
56103..
x1
)
Known
05f2a..
:
∀ x0 :
ι → ο
.
∀ x1 .
x0
x1
⟶
707bb..
x0
x1
Known
f147c..
:
∀ x0 :
ι → ο
.
∀ x1 .
de327..
x0
x1
x1
Theorem
76e10..
:
∀ x0 :
ι → ο
.
707bb..
x0
(
56103..
(
λ x1 .
x1
)
)
(proof)
Param
and
:
ο
→
ο
→
ο
Param
8ac9a..
:
ι
→
ο
Definition
df3ca..
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι → ο
.
λ x2 x3 .
∀ x4 :
ι →
ι → ο
.
(
∀ x5 x6 .
x1
x5
x6
⟶
x4
x5
x6
)
⟶
(
∀ x5 .
x0
x5
⟶
x4
x5
x5
)
⟶
(
∀ x5 x6 .
x4
x5
x6
⟶
x4
x6
x5
)
⟶
(
∀ x5 x6 x7 .
x4
x5
x6
⟶
x4
x6
x7
⟶
x4
x5
x7
)
⟶
x4
x2
x3
Definition
4b3e1..
:=
λ x0 :
ι → ο
.
λ x1 x2 .
∀ x3 :
(
ι → ο
)
→
ι →
ι → ο
.
(
∀ x4 :
ι → ο
.
∀ x5 :
ι → ι
.
∀ x6 .
(
∀ x7 .
707bb..
(
de327..
x4
x7
)
(
x5
x7
)
)
⟶
707bb..
x4
x6
⟶
x3
x4
(
57d6a..
(
56103..
x5
)
x6
)
(
x5
x6
)
)
⟶
(
∀ x4 :
ι → ο
.
∀ x5 x6 :
ι → ι
.
(
∀ x7 .
x3
(
de327..
x4
x7
)
(
x5
x7
)
(
x6
x7
)
)
⟶
x3
x4
(
56103..
x5
)
(
56103..
x6
)
)
⟶
(
∀ x4 :
ι → ο
.
∀ x5 x6 x7 .
x3
x4
x5
x7
⟶
707bb..
x4
x6
⟶
x3
x4
(
57d6a..
x5
x6
)
(
57d6a..
x7
x6
)
)
⟶
(
∀ x4 :
ι → ο
.
∀ x5 x6 x7 .
x3
x4
x6
x7
⟶
707bb..
x4
x5
⟶
x3
x4
(
57d6a..
x5
x6
)
(
57d6a..
x5
x7
)
)
⟶
x3
x0
x1
x2
Definition
d701e..
:=
λ x0 :
ι → ο
.
df3ca..
(
707bb..
x0
)
(
4b3e1..
x0
)
Known
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
03c76..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι → ι
.
∀ x2 .
(
∀ x3 .
707bb..
(
de327..
x0
x3
)
(
x1
x3
)
)
⟶
707bb..
x0
x2
⟶
d701e..
x0
(
57d6a..
(
56103..
x1
)
x2
)
(
x1
x2
)
Theorem
90489..
:
∀ x0 : ο .
(
∀ x1 .
and
(
707bb..
8ac9a..
x1
)
(
∀ x2 .
d701e..
(
de327..
8ac9a..
x2
)
(
57d6a..
x1
x2
)
x2
)
⟶
x0
)
⟶
x0
(proof)
Known
2da01..
:
∀ x0 :
ι → ο
.
∀ x1 x2 .
707bb..
x0
x1
⟶
707bb..
x0
x2
⟶
707bb..
x0
(
57d6a..
x1
x2
)
Known
553b7..
:
∀ x0 :
ι → ο
.
∀ x1 x2 x3 .
d701e..
x0
x1
x2
⟶
d701e..
x0
x2
x3
⟶
d701e..
x0
x1
x3
Known
a95d2..
:
∀ x0 :
ι → ο
.
∀ x1 x2 .
d701e..
x0
x1
x2
⟶
d701e..
x0
x2
x1
Known
d6b7f..
:
∀ x0 :
ι → ο
.
∀ x1 x2 .
4b3e1..
x0
x1
x2
⟶
d701e..
x0
x1
x2
Known
c99f6..
:
∀ x0 :
ι → ο
.
∀ x1 x2 x3 .
4b3e1..
x0
x2
x3
⟶
707bb..
x0
x1
⟶
4b3e1..
x0
(
57d6a..
x1
x2
)
(
57d6a..
x1
x3
)
Known
45772..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι → ι
.
∀ x2 .
(
∀ x3 .
707bb..
(
de327..
x0
x3
)
(
x1
x3
)
)
⟶
707bb..
x0
x2
⟶
4b3e1..
x0
(
57d6a..
(
56103..
x1
)
x2
)
(
x1
x2
)
Known
0998e..
:
∀ x0 :
ι → ο
.
∀ x1 x2 .
x0
x2
⟶
de327..
x0
x1
x2
Theorem
1dd60..
:
∀ x0 : ο .
(
∀ x1 .
and
(
707bb..
8ac9a..
x1
)
(
∀ x2 .
d701e..
(
de327..
8ac9a..
x2
)
(
57d6a..
x1
x2
)
(
57d6a..
x2
(
57d6a..
x1
x2
)
)
)
⟶
x0
)
⟶
x0
(proof)