∀ x0 : ι → ο . ∀ x1 x2 : ι → ι → ι . (∀ x3 x4 . x0 x3 ⟶ x0 x4 ⟶ x0 (x1 x3 x4)) ⟶ (∀ x3 x4 . x0 x3 ⟶ x0 x4 ⟶ x0 (x2 x3 x4)) ⟶ (∀ x3 x4 x5 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x1 x3 (x1 x4 x5) = x1 x4 (x1 x3 x5)) ⟶ (∀ x3 x4 x5 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x1 (x1 x3 x4) x5 = x1 x3 (x1 x4 x5)) ⟶ (∀ x3 x4 x5 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x2 x3 (x1 x4 x5) = x1 (x2 x3 x4) (x2 x3 x5)) ⟶ (∀ x3 x4 x5 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x2 (x1 x3 x4) x5 = x1 (x2 x3 x5) (x2 x4 x5)) ⟶ ∀ x3 : ι → ι . (∀ x4 . x0 x4 ⟶ x3 x4 = x2 x4 x4) ⟶ ∀ x4 : ι → ι . (∀ x5 . x0 x5 ⟶ x0 (x4 x5)) ⟶ (∀ x5 . x0 x5 ⟶ x4 (x4 x5) = x5) ⟶ (∀ x5 x6 . x0 x5 ⟶ x0 x6 ⟶ x1 (x4 x5) (x1 x5 x6) = x6) ⟶ (∀ x5 x6 . x0 x5 ⟶ x0 x6 ⟶ x1 x5 (x1 (x4 x5) x6) = x6) ⟶ (∀ x5 x6 . x0 x5 ⟶ x0 x6 ⟶ x2 (x4 x5) x6 = x4 (x2 x5 x6)) ⟶ (∀ x5 x6 . x0 x5 ⟶ x0 x6 ⟶ x2 x5 (x4 x6) = x4 (x2 x5 x6)) ⟶ (∀ x5 x6 . x0 x5 ⟶ x0 x6 ⟶ x2 x5 x6 = x2 x6 x5) ⟶ (∀ x5 x6 x7 x8 . x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x2 (x2 x5 x6) (x2 x7 x8) = x2 (x2 x5 x7) (x2 x6 x8)) ⟶ ∀ x5 x6 . x0 x5 ⟶ x0 x6 ⟶ ∀ x7 x8 x9 x10 . x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x5 = x1 (x3 x7) (x1 (x3 x8) (x1 (x3 x9) (x3 x10))) ⟶ ∀ x11 x12 x13 x14 . x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x6 = x1 (x3 x11) (x1 (x3 x12) (x1 (x3 x13) (x3 x14))) ⟶ ∀ x15 : ο . (∀ x16 x17 x18 x19 . x0 x16 ⟶ x0 x17 ⟶ x0 x18 ⟶ x0 x19 ⟶ x2 x5 x6 = x1 (x3 x16) (x1 (x3 x17) (x1 (x3 x18) (x3 x19))) ⟶ x15) ⟶ x15 |
|