Search for blocks/addresses/...

Proofgold Proposition

∀ x0 : ο . (wceq clmat (cmpt (λ x1 . cvv) (λ x1 . cmpt2 (λ x2 x3 . co c1 (cfv (cv x1) chash) cfz) (λ x2 x3 . co c1 (cfv (cfv cc0 (cv x1)) chash) cfz) (λ x2 x3 . cfv (co (cv x3) c1 cmin) (cfv (co (cv x2) c1 cmin) (cv x1)))))(∀ x1 : ι → ο . wceq (ccref x1) (crab (λ x2 . wral (λ x3 . wceq (cuni (cv x2)) (cuni (cv x3))wrex (λ x4 . wbr (cv x4) (cv x3) cref) (λ x4 . cin (cpw (cv x2)) x1)) (λ x3 . cpw (cv x2))) (λ x2 . ctop)))wceq cldlf (ccref (cab (λ x1 . wbr (cv x1) com cdom)))wceq cpcmp (cab (λ x1 . wcel (cv x1) (ccref (cfv (cv x1) clocfin))))wceq cmetid (cmpt (λ x1 . cuni (crn cpsmet)) (λ x1 . copab (λ x2 x3 . wa (wa (wcel (cv x2) (cdm (cdm (cv x1)))) (wcel (cv x3) (cdm (cdm (cv x1))))) (wceq (co (cv x2) (cv x3) (cv x1)) cc0))))wceq cpstm (cmpt (λ x1 . cuni (crn cpsmet)) (λ x1 . cmpt2 (λ x2 x3 . cqs (cdm (cdm (cv x1))) (cfv (cv x1) cmetid)) (λ x2 x3 . cqs (cdm (cdm (cv x1))) (cfv (cv x1) cmetid)) (λ x2 x3 . cuni (cab (λ x4 . wrex (λ x5 . wrex (λ x6 . wceq (cv x4) (co (cv x5) (cv x6) (cv x1))) (λ x6 . cv x3)) (λ x5 . cv x2))))))wceq chcmp (copab (λ x1 x2 . w3a (wa (wcel (cv x1) (cuni (crn cust))) (wcel (cv x2) ccusp)) (wceq (co (cfv (cv x2) cuss) (cdm (cuni (cv x1))) crest) (cv x1)) (wceq (cfv (cdm (cuni (cv x1))) (cfv (cfv (cv x2) ctopn) ccl)) (cfv (cv x2) cbs))))wceq cqqh (cmpt (λ x1 . cvv) (λ x1 . crn (cmpt2 (λ x2 x3 . cz) (λ x2 x3 . cima (ccnv (cfv (cv x1) czrh)) (cfv (cv x1) cui)) (λ x2 x3 . cop (co (cv x2) (cv x3) cdiv) (co (cfv (cv x2) (cfv (cv x1) czrh)) (cfv (cv x3) (cfv (cv x1) czrh)) (cfv (cv x1) cdvr))))))wceq crrh (cmpt (λ x1 . cvv) (λ x1 . cfv (cfv (cv x1) cqqh) (co (cfv (crn cioo) ctg) (cfv (cv x1) ctopn) ccnext)))wceq crrext (crab (λ x1 . wa (wa (wcel (cfv (cv x1) czlm) cnlm) (wceq (cfv (cv x1) cchr) cc0)) (wa (wcel (cv x1) ccusp) (wceq (cfv (cv x1) cuss) (cfv (cres (cfv (cv x1) cds) (cxp (cfv (cv x1) cbs) (cfv (cv x1) cbs))) cmetu)))) (λ x1 . cin cnrg cdr))wceq cxrh (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cxr) (λ x2 . cif (wcel (cv x2) cr) (cfv (cv x2) (cfv (cv x1) crrh)) (cif (wceq (cv x2) cpnf) (cfv (cima (cfv (cv x1) crrh) cr) (cfv (cv x1) club)) (cfv (cima (cfv (cv x1) crrh) cr) (cfv (cv x1) cglb))))))wceq cmntop (copab (λ x1 x2 . wa (wcel (cv x1) cn0) (w3a (wcel (cv x2) c2ndc) (wcel (cv x2) cha) (wcel (cv x2) (clly (cec (cfv (cfv (cv x1) cehl) ctopn) chmph))))))wceq cind (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cpw (cv x1)) (λ x2 . cmpt (λ x3 . cv x1) (λ x3 . cif (wcel (cv x3) (cv x2)) c1 cc0))))(∀ x1 x2 : ι → ι → ο . wceq (cesum x1 x2) (cuni (co (co cxrs (co cc0 cpnf cicc) cress) (cmpt x1 x2) ctsu)))(∀ x1 : ι → ο . wceq (cofc x1) (cmpt2 (λ x2 x3 . cvv) (λ x2 x3 . cvv) (λ x2 x3 . cmpt (λ x4 . cdm (cv x2)) (λ x4 . co (cfv (cv x4) (cv x2)) (cv x3) x1))))wceq csiga (cmpt (λ x1 . cvv) (λ x1 . cab (λ x2 . wa (wss (cv x2) (cpw (cv x1))) (w3a (wcel (cv x1) (cv x2)) (wral (λ x3 . wcel (cdif (cv x1) (cv x3)) (cv x2)) (λ x3 . cv x2)) (wral (λ x3 . wbr (cv x3) com cdomwcel (cuni (cv x3)) (cv x2)) (λ x3 . cpw (cv x2)))))))wceq csigagen (cmpt (λ x1 . cvv) (λ x1 . cint (crab (λ x2 . wss (cv x1) (cv x2)) (λ x2 . cfv (cuni (cv x1)) csiga))))wceq cbrsiga (cfv (cfv (crn cioo) ctg) csigagen)x0)x0
type
prop
theory
SetMM
name
df_lmat__df_cref__df_ldlf__df_pcmp__df_metid__df_pstm__df_hcmp__df_qqh__df_rrh__df_rrext__df_xrh__df_mntop__df_ind__df_esum__df_ofc__df_siga__df_sigagen__df_brsiga
proof
PUV1k..
Megalodon
-
proofgold address
TMJff..
creator
36224 PrCmT../ab70f..
owner
36224 PrCmT../ab70f..
term root
5461c..