Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrNHZ..
/
2723b..
PUPbB..
/
eb11d..
vout
PrNHZ..
/
283e1..
63.93 bars
TMdxU..
/
c5b09..
ownership of
680b2..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMPHC..
/
6c8d3..
ownership of
a25be..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMbch..
/
7ed43..
ownership of
7929c..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMVpW..
/
cfec7..
ownership of
7f1de..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMLKH..
/
28d65..
ownership of
1af62..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMa7j..
/
9be96..
ownership of
26314..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMMQa..
/
29f4c..
ownership of
02125..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMbAz..
/
b56d3..
ownership of
3c7c0..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMNYM..
/
e2f87..
ownership of
16a34..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMMym..
/
8ac26..
ownership of
80723..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMWgx..
/
a0d61..
ownership of
d0bc5..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMWwY..
/
42eec..
ownership of
6914a..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMEtW..
/
67a7a..
ownership of
6d267..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMF6e..
/
7f388..
ownership of
31c42..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMYFW..
/
42fcb..
ownership of
2749c..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMUER..
/
59742..
ownership of
0691e..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMc3W..
/
ccd77..
ownership of
694b2..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMG6C..
/
549c3..
ownership of
e4a86..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMYeH..
/
947d3..
ownership of
412d0..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMJDi..
/
21b01..
ownership of
94724..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMbJv..
/
2ac25..
ownership of
89fb5..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMVWB..
/
8195d..
ownership of
4f6fe..
as obj with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
PUcxH..
/
aa19c..
doc published by
PrQUS..
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
int
int
:
ι
Param
SNoS_
SNoS_
:
ι
→
ι
Param
omega
omega
:
ι
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
mul_SNo
mul_SNo
:
ι
→
ι
→
ι
Param
eps_
eps_
:
ι
→
ι
Definition
diadic_rational_p
diadic_rational_p
:=
λ x0 .
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
omega
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
int
)
(
x0
=
mul_SNo
(
eps_
x2
)
x4
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
Known
diadic_rational_p_SNoS_omega
diadic_rational_p_SNoS_omega
:
∀ x0 .
diadic_rational_p
x0
⟶
x0
∈
SNoS_
omega
Known
int_diadic_rational_p
int_diadic_rational_p
:
∀ x0 .
x0
∈
int
⟶
diadic_rational_p
x0
Theorem
Subq_int_SNoS_omega
Subq_int_SNoS_omega
:
int
⊆
SNoS_
omega
(proof)
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Param
real
real
:
ι
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Param
recip_SNo
recip_SNo
:
ι
→
ι
Definition
div_SNo
div_SNo
:=
λ x0 x1 .
mul_SNo
x0
(
recip_SNo
x1
)
Definition
rational
rational
:=
{x0 ∈
real
|
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
int
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
setminus
omega
(
Sing
0
)
)
(
x0
=
div_SNo
x2
x4
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
}
Known
SNoS_omega_diadic_rational_p
SNoS_omega_diadic_rational_p
:
∀ x0 .
x0
∈
SNoS_
omega
⟶
diadic_rational_p
x0
Param
nat_p
nat_p
:
ι
→
ο
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
SNoS_omega_real
SNoS_omega_real
:
SNoS_
omega
⊆
real
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Param
exp_SNo_nat
exp_SNo_nat
:
ι
→
ι
→
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
setminusI
setminusI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
nIn
x2
x1
⟶
x2
∈
setminus
x0
x1
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
nat_exp_SNo_nat
nat_exp_SNo_nat
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
exp_SNo_nat
x0
x1
)
Known
nat_2
nat_2
:
nat_p
2
Known
neq_1_0
neq_1_0
:
1
=
0
⟶
∀ x0 : ο .
x0
Known
mul_SNo_eps_power_2
mul_SNo_eps_power_2
:
∀ x0 .
nat_p
x0
⟶
mul_SNo
(
eps_
x0
)
(
exp_SNo_nat
2
x0
)
=
1
Param
SNo
SNo
:
ι
→
ο
Known
mul_SNo_zeroR
mul_SNo_zeroR
:
∀ x0 .
SNo
x0
⟶
mul_SNo
x0
0
=
0
Known
SNo_eps_
SNo_eps_
:
∀ x0 .
x0
∈
omega
⟶
SNo
(
eps_
x0
)
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
recip_SNo_pow_2
recip_SNo_pow_2
:
∀ x0 .
nat_p
x0
⟶
recip_SNo
(
exp_SNo_nat
2
x0
)
=
eps_
x0
Known
mul_SNo_com
mul_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
x1
=
mul_SNo
x1
x0
Known
int_SNo
int_SNo
:
∀ x0 .
x0
∈
int
⟶
SNo
x0
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Theorem
Subq_SNoS_omega_rational
Subq_SNoS_omega_rational
:
SNoS_
omega
⊆
rational
(proof)
Known
Sep_Subq
Sep_Subq
:
∀ x0 .
∀ x1 :
ι → ο
.
Sep
x0
x1
⊆
x0
Theorem
Subq_rational_real
Subq_rational_real
:
rational
⊆
real
(proof)
Param
minus_SNo
minus_SNo
:
ι
→
ι
Known
SepE
SepE
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
and
(
x2
∈
x0
)
(
x1
x2
)
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Known
real_minus_SNo
real_minus_SNo
:
∀ x0 .
x0
∈
real
⟶
minus_SNo
x0
∈
real
Known
int_minus_SNo
int_minus_SNo
:
∀ x0 .
x0
∈
int
⟶
minus_SNo
x0
∈
int
Known
mul_SNo_nonzero_cancel
mul_SNo_nonzero_cancel_L
:
∀ x0 x1 x2 .
SNo
x0
⟶
(
x0
=
0
⟶
∀ x3 : ο .
x3
)
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
x1
=
mul_SNo
x0
x2
⟶
x1
=
x2
Known
real_SNo
real_SNo
:
∀ x0 .
x0
∈
real
⟶
SNo
x0
Known
SNo_div_SNo
SNo_div_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
div_SNo
x0
x1
)
Known
mul_SNo_minus_distrR
mul_minus_SNo_distrR
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
(
minus_SNo
x1
)
=
minus_SNo
(
mul_SNo
x0
x1
)
Known
mul_div_SNo_invR
mul_div_SNo_invR
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
(
x1
=
0
⟶
∀ x2 : ο .
x2
)
⟶
mul_SNo
x1
(
div_SNo
x0
x1
)
=
x0
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Known
omega_SNo
omega_SNo
:
∀ x0 .
x0
∈
omega
⟶
SNo
x0
Theorem
rational_minus_SNo
rational_minus_SNo
:
∀ x0 .
x0
∈
rational
⟶
minus_SNo
x0
∈
rational
(proof)
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Definition
nat_pair
nat_pair
:=
λ x0 x1 .
mul_SNo
(
exp_SNo_nat
2
x0
)
(
add_SNo
(
mul_SNo
2
x1
)
1
)
Known
mul_SNo_In_omega
mul_SNo_In_omega
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
mul_SNo
x0
x1
∈
omega
Known
add_SNo_In_omega
add_SNo_In_omega
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
add_SNo
x0
x1
∈
omega
Known
nat_1
nat_1
:
nat_p
1
Theorem
nat_pair_In_omega
nat_pair_In_omega
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
nat_pair
x0
x1
∈
omega
(proof)
Param
even_nat
even_nat
:
ι
→
ο
Param
mul_nat
mul_nat
:
ι
→
ι
→
ι
Known
mul_nat_mul_SNo
mul_nat_mul_SNo
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
mul_nat
x0
x1
=
mul_SNo
x0
x1
Known
even_nat_double
even_nat_double
:
∀ x0 .
nat_p
x0
⟶
even_nat
(
mul_nat
2
x0
)
Theorem
even_nat_2x
:
∀ x0 .
x0
∈
omega
⟶
even_nat
(
mul_SNo
2
x0
)
(proof)
Param
odd_nat
odd_nat
:
ι
→
ο
Param
ordinal
ordinal
:
ι
→
ο
Known
ordinal_ordsucc_SNo_eq
ordinal_ordsucc_SNo_eq
:
∀ x0 .
ordinal
x0
⟶
ordsucc
x0
=
add_SNo
1
x0
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
even_nat_odd_nat_S
even_nat_odd_nat_S
:
∀ x0 .
even_nat
x0
⟶
odd_nat
(
ordsucc
x0
)
Theorem
odd_nat_1p2x
:
∀ x0 .
x0
∈
omega
⟶
odd_nat
(
add_SNo
1
(
mul_SNo
2
x0
)
)
(proof)
Known
add_SNo_com
add_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
x1
=
add_SNo
x1
x0
Known
SNo_mul_SNo
SNo_mul_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
mul_SNo
x0
x1
)
Known
SNo_2
SNo_2
:
SNo
2
Known
SNo_1
SNo_1
:
SNo
1
Theorem
odd_nat_2xp1
:
∀ x0 .
x0
∈
omega
⟶
odd_nat
(
add_SNo
(
mul_SNo
2
x0
)
1
)
(proof)
Known
nat_complete_ind
nat_complete_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
nat_p
x1
⟶
(
∀ x2 .
x2
∈
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
nat_inv_impred
nat_inv_impred
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
even_nat_not_odd_nat
even_nat_not_odd_nat
:
∀ x0 .
even_nat
x0
⟶
not
(
odd_nat
x0
)
Known
exp_SNo_nat_S
exp_SNo_nat_S
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
nat_p
x1
⟶
exp_SNo_nat
x0
(
ordsucc
x1
)
=
mul_SNo
x0
(
exp_SNo_nat
x0
x1
)
Known
mul_SNo_assoc
mul_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
mul_SNo
x1
x2
)
=
mul_SNo
(
mul_SNo
x0
x1
)
x2
Known
SNo_exp_SNo_nat
SNo_exp_SNo_nat
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
nat_p
x1
⟶
SNo
(
exp_SNo_nat
x0
x1
)
Known
SNo_add_SNo
SNo_add_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
Known
nat_p_SNo
nat_p_SNo
:
∀ x0 .
nat_p
x0
⟶
SNo
x0
Known
exp_SNo_nat_0
exp_SNo_nat_0
:
∀ x0 .
SNo
x0
⟶
exp_SNo_nat
x0
0
=
1
Known
mul_SNo_oneL
mul_SNo_oneL
:
∀ x0 .
SNo
x0
⟶
mul_SNo
1
x0
=
x0
Param
SNoLt
SNoLt
:
ι
→
ι
→
ο
Known
ordinal_SNoLt_In
ordinal_SNoLt_In
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
SNoLt
x0
x1
⟶
x0
∈
x1
Known
pos_mul_SNo_Lt'
pos_mul_SNo_Lt
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
0
x2
⟶
SNoLt
x0
x1
⟶
SNoLt
(
mul_SNo
x0
x2
)
(
mul_SNo
x1
x2
)
Known
nat_ordsucc
nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
ordsucc
x0
)
Param
SNoLe
SNoLe
:
ι
→
ι
→
ο
Known
SNoLeLt_tra
SNoLeLt_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x1
⟶
SNoLt
x1
x2
⟶
SNoLt
x0
x2
Known
SNo_0
SNo_0
:
SNo
0
Known
mul_SNo_nonneg_nonneg
mul_SNo_nonneg_nonneg
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLe
0
x0
⟶
SNoLe
0
x1
⟶
SNoLe
0
(
mul_SNo
x0
x1
)
Known
SNoLtLe
SNoLtLe
:
∀ x0 x1 .
SNoLt
x0
x1
⟶
SNoLe
x0
x1
Known
SNoLt_0_2
SNoLt_0_2
:
SNoLt
0
2
Known
omega_nonneg
omega_nonneg
:
∀ x0 .
x0
∈
omega
⟶
SNoLe
0
x0
Known
add_SNo_0R
add_SNo_0R
:
∀ x0 .
SNo
x0
⟶
add_SNo
x0
0
=
x0
Known
add_SNo_Lt2
add_SNo_Lt2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x1
x2
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
x0
x2
)
Known
SNoLt_0_1
SNoLt_0_1
:
SNoLt
0
1
Known
exp_SNo_nat_pos
exp_SNo_nat_pos
:
∀ x0 .
SNo
x0
⟶
SNoLt
0
x0
⟶
∀ x1 .
nat_p
x1
⟶
SNoLt
0
(
exp_SNo_nat
x0
x1
)
Known
SNoLt_1_2
SNoLt_1_2
:
SNoLt
1
2
Known
neq_2_0
neq_2_0
:
2
=
0
⟶
∀ x0 : ο .
x0
Theorem
nat_pair_0
nat_pair_0
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
∀ x2 .
x2
∈
omega
⟶
∀ x3 .
x3
∈
omega
⟶
nat_pair
x0
x1
=
nat_pair
x2
x3
⟶
x0
=
x2
(proof)
Known
add_SNo_cancel_R
add_SNo_cancel_R
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
x1
=
add_SNo
x2
x1
⟶
x0
=
x2
Theorem
nat_pair_1
nat_pair_1
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
∀ x2 .
x2
∈
omega
⟶
∀ x3 .
x3
∈
omega
⟶
nat_pair
x0
x1
=
nat_pair
x2
x3
⟶
x1
=
x3
(proof)
Param
equip
equip
:
ι
→
ι
→
ο
Definition
inj
inj
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
Definition
atleastp
atleastp
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
inj
x0
x1
x3
⟶
x2
)
⟶
x2
Known
2c48a..
atleastp_antisym_equip
:
∀ x0 x1 .
atleastp
x0
x1
⟶
atleastp
x1
x0
⟶
equip
x0
x1
Known
Subq_atleastp
Subq_atleastp
:
∀ x0 x1 .
x0
⊆
x1
⟶
atleastp
x0
x1
Known
Subq_tra
Subq_tra
:
∀ x0 x1 x2 .
x0
⊆
x1
⟶
x1
⊆
x2
⟶
x0
⊆
x2
Known
Subq_omega_int
Subq_omega_int
:
omega
⊆
int
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
SNoLtLe_or
SNoLtLe_or
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
or
(
SNoLt
x0
x1
)
(
SNoLe
x1
x0
)
Known
minus_SNo_Lt_contra2
minus_SNo_Lt_contra2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
x0
(
minus_SNo
x1
)
⟶
SNoLt
x1
(
minus_SNo
x0
)
Known
minus_SNo_0
minus_SNo_0
:
minus_SNo
0
=
0
Known
nat_0
nat_0
:
nat_p
0
Known
minus_SNo_invol
minus_SNo_invol
:
∀ x0 .
SNo
x0
⟶
minus_SNo
(
minus_SNo
x0
)
=
x0
Known
neq_0_1
neq_0_1
:
0
=
1
⟶
∀ x0 : ο .
x0
Known
If_i_0
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Known
SNoLt_irref
SNoLt_irref
:
∀ x0 .
not
(
SNoLt
x0
x0
)
Known
SNoLtLe_tra
SNoLtLe_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x1
⟶
SNoLe
x1
x2
⟶
SNoLt
x0
x2
Known
If_i_1
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Known
Eps_i_ex
Eps_i_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
x0
(
prim0
x0
)
Known
int_3_cases
int_3_cases
:
∀ x0 .
x0
∈
int
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
omega
⟶
x0
=
minus_SNo
(
ordsucc
x2
)
⟶
x1
)
⟶
(
x0
=
0
⟶
x1
)
⟶
(
∀ x2 .
x2
∈
omega
⟶
x0
=
ordsucc
x2
⟶
x1
)
⟶
x1
Known
mul_SNo_zeroL
mul_SNo_zeroL
:
∀ x0 .
SNo
x0
⟶
mul_SNo
0
x0
=
0
Known
SNo_recip_SNo
SNo_recip_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
recip_SNo
x0
)
Known
recip_SNo_of_pos_is_pos
recip_SNo_of_pos_is_pos
:
∀ x0 .
SNo
x0
⟶
SNoLt
0
x0
⟶
SNoLt
0
(
recip_SNo
x0
)
Known
SNoLeE
SNoLeE
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLe
x0
x1
⟶
or
(
SNoLt
x0
x1
)
(
x0
=
x1
)
Known
minus_SNo_Lt_contra1
minus_SNo_Lt_contra1
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
(
minus_SNo
x0
)
x1
⟶
SNoLt
(
minus_SNo
x1
)
x0
Known
omega_ordsucc
omega_ordsucc
:
∀ x0 .
x0
∈
omega
⟶
ordsucc
x0
∈
omega
Known
ordinal_In_SNoLt
ordinal_In_SNoLt
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
SNoLt
x1
x0
Known
nat_0_in_ordsucc
nat_0_in_ordsucc
:
∀ x0 .
nat_p
x0
⟶
0
∈
ordsucc
x0
Theorem
form100_3
form100_3
:
equip
omega
rational
(proof)