Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr314..
/
31480..
PUaoA..
/
2d008..
vout
Pr314..
/
0a545..
44.17 bars
TMbZk..
/
f3ee3..
ownership of
04384..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMLPm..
/
05633..
ownership of
b397c..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMGPm..
/
6bce3..
ownership of
c1c8c..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMYzs..
/
8d689..
ownership of
1725f..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMRx2..
/
69b96..
ownership of
6bcc6..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMcpg..
/
86ea0..
ownership of
afb66..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMRRy..
/
82f8c..
ownership of
d5a6d..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMPET..
/
6458c..
ownership of
1801e..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMPHj..
/
204b2..
ownership of
c6b1a..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMTWU..
/
aff5f..
ownership of
0afb2..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMYqS..
/
703de..
ownership of
15814..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMSSZ..
/
580ce..
ownership of
c79d0..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMKQs..
/
567d7..
ownership of
6c1cd..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMd1v..
/
50df2..
ownership of
40638..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMcDC..
/
2ae97..
ownership of
c5c4d..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMSTi..
/
9cdca..
ownership of
016da..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMMsG..
/
536fb..
ownership of
d04ad..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMboi..
/
16d5d..
ownership of
33c12..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMa8q..
/
86163..
ownership of
95a41..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMWQ9..
/
c59c5..
ownership of
d59bf..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMY2W..
/
50e44..
ownership of
8db9d..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMTXt..
/
e52ff..
ownership of
abda0..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMNmC..
/
f4161..
ownership of
a2bb4..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMZQJ..
/
19cc8..
ownership of
955f6..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMHu4..
/
a9a5d..
ownership of
b09b9..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMHoo..
/
59bb7..
ownership of
db687..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
PUS8F..
/
72a16..
doc published by
PrQUS..
Param
SNo
SNo
:
ι
→
ο
Param
SNoLe
SNoLe
:
ι
→
ι
→
ο
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
sqrt_SNo_nonneg
sqrt_SNo_nonneg
:
ι
→
ι
Param
mul_SNo
mul_SNo
:
ι
→
ι
→
ι
Param
SNoS_
SNoS_
:
ι
→
ι
Param
SNoLev
SNoLev
:
ι
→
ι
Known
SNoLev_ind
SNoLev_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
SNo
x1
⟶
(
∀ x2 .
x2
∈
SNoS_
(
SNoLev
x1
)
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
SNo
x1
⟶
x0
x1
Param
SNoCut
SNoCut
:
ι
→
ι
→
ι
Param
famunion
famunion
:
ι
→
(
ι
→
ι
) →
ι
Param
omega
omega
:
ι
Param
ap
ap
:
ι
→
ι
→
ι
Param
SNo_sqrtaux
SNo_sqrtaux
:
ι
→
(
ι
→
ι
) →
ι
→
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Known
sqrt_SNo_nonneg_eq
sqrt_SNo_nonneg_eq
:
∀ x0 .
SNo
x0
⟶
sqrt_SNo_nonneg
x0
=
SNoCut
(
famunion
omega
(
λ x2 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x2
)
0
)
)
(
famunion
omega
(
λ x2 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x2
)
1
)
)
Param
SNoLt
SNoLt
:
ι
→
ι
→
ο
Param
nat_p
nat_p
:
ι
→
ο
Definition
SNoCutP
SNoCutP
:=
λ x0 x1 .
and
(
and
(
∀ x2 .
x2
∈
x0
⟶
SNo
x2
)
(
∀ x2 .
x2
∈
x1
⟶
SNo
x2
)
)
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
⟶
SNoLt
x2
x3
)
Known
sqrt_SNo_nonneg_prop1b
sqrt_SNo_nonneg_prop1b
:
∀ x0 .
SNo
x0
⟶
SNoLe
0
x0
⟶
(
∀ x1 .
nat_p
x1
⟶
and
(
∀ x2 .
x2
∈
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
0
⟶
and
(
and
(
SNo
x2
)
(
SNoLe
0
x2
)
)
(
SNoLt
(
mul_SNo
x2
x2
)
x0
)
)
(
∀ x2 .
x2
∈
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
1
⟶
and
(
and
(
SNo
x2
)
(
SNoLe
0
x2
)
)
(
SNoLt
x0
(
mul_SNo
x2
x2
)
)
)
)
⟶
SNoCutP
(
famunion
omega
(
λ x1 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
0
)
)
(
famunion
omega
(
λ x1 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
1
)
)
Known
sqrt_SNo_nonneg_prop1a
sqrt_SNo_nonneg_prop1a
:
∀ x0 .
SNo
x0
⟶
SNoLe
0
x0
⟶
(
∀ x1 .
x1
∈
SNoS_
(
SNoLev
x0
)
⟶
SNoLe
0
x1
⟶
and
(
and
(
SNo
(
sqrt_SNo_nonneg
x1
)
)
(
SNoLe
0
(
sqrt_SNo_nonneg
x1
)
)
)
(
mul_SNo
(
sqrt_SNo_nonneg
x1
)
(
sqrt_SNo_nonneg
x1
)
=
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
and
(
∀ x2 .
x2
∈
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
0
⟶
and
(
and
(
SNo
x2
)
(
SNoLe
0
x2
)
)
(
SNoLt
(
mul_SNo
x2
x2
)
x0
)
)
(
∀ x2 .
x2
∈
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
1
⟶
and
(
and
(
SNo
x2
)
(
SNoLe
0
x2
)
)
(
SNoLt
x0
(
mul_SNo
x2
x2
)
)
)
Param
binunion
binunion
:
ι
→
ι
→
ι
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
SNoEq_
SNoEq_
:
ι
→
ι
→
ι
→
ο
Known
SNoCutP_SNoCut_impred
SNoCutP_SNoCut_impred
:
∀ x0 x1 .
SNoCutP
x0
x1
⟶
∀ x2 : ο .
(
SNo
(
SNoCut
x0
x1
)
⟶
SNoLev
(
SNoCut
x0
x1
)
∈
ordsucc
(
binunion
(
famunion
x0
(
λ x3 .
ordsucc
(
SNoLev
x3
)
)
)
(
famunion
x1
(
λ x3 .
ordsucc
(
SNoLev
x3
)
)
)
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
SNoLt
x3
(
SNoCut
x0
x1
)
)
⟶
(
∀ x3 .
x3
∈
x1
⟶
SNoLt
(
SNoCut
x0
x1
)
x3
)
⟶
(
∀ x3 .
SNo
x3
⟶
(
∀ x4 .
x4
∈
x0
⟶
SNoLt
x4
x3
)
⟶
(
∀ x4 .
x4
∈
x1
⟶
SNoLt
x3
x4
)
⟶
and
(
SNoLev
(
SNoCut
x0
x1
)
⊆
SNoLev
x3
)
(
SNoEq_
(
SNoLev
(
SNoCut
x0
x1
)
)
(
SNoCut
x0
x1
)
x3
)
)
⟶
x2
)
⟶
x2
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
sqrt_SNo_nonneg_prop1c
sqrt_SNo_nonneg_prop1c
:
∀ x0 .
SNo
x0
⟶
SNoLe
0
x0
⟶
SNoCutP
(
famunion
omega
(
λ x1 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
0
)
)
(
famunion
omega
(
λ x1 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
1
)
)
⟶
(
∀ x1 .
x1
∈
famunion
omega
(
λ x2 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x2
)
1
)
⟶
∀ x2 : ο .
(
SNo
x1
⟶
SNoLe
0
x1
⟶
SNoLt
x0
(
mul_SNo
x1
x1
)
⟶
x2
)
⟶
x2
)
⟶
SNoLe
0
(
SNoCut
(
famunion
omega
(
λ x1 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
0
)
)
(
famunion
omega
(
λ x1 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
1
)
)
)
Known
SNoLt_trichotomy_or_impred
SNoLt_trichotomy_or_impred
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
∀ x2 : ο .
(
SNoLt
x0
x1
⟶
x2
)
⟶
(
x0
=
x1
⟶
x2
)
⟶
(
SNoLt
x1
x0
⟶
x2
)
⟶
x2
Known
SNo_mul_SNo
SNo_mul_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
mul_SNo
x0
x1
)
Definition
False
False
:=
∀ x0 : ο .
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
sqrt_SNo_nonneg_prop1d
sqrt_SNo_nonneg_prop1d
:
∀ x0 .
SNo
x0
⟶
SNoLe
0
x0
⟶
(
∀ x1 .
x1
∈
SNoS_
(
SNoLev
x0
)
⟶
SNoLe
0
x1
⟶
and
(
and
(
SNo
(
sqrt_SNo_nonneg
x1
)
)
(
SNoLe
0
(
sqrt_SNo_nonneg
x1
)
)
)
(
mul_SNo
(
sqrt_SNo_nonneg
x1
)
(
sqrt_SNo_nonneg
x1
)
=
x1
)
)
⟶
SNoCutP
(
famunion
omega
(
λ x1 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
0
)
)
(
famunion
omega
(
λ x1 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
1
)
)
⟶
SNoLe
0
(
SNoCut
(
famunion
omega
(
λ x1 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
0
)
)
(
famunion
omega
(
λ x1 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
1
)
)
)
⟶
SNoLt
(
mul_SNo
(
SNoCut
(
famunion
omega
(
λ x1 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
0
)
)
(
famunion
omega
(
λ x1 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
1
)
)
)
(
SNoCut
(
famunion
omega
(
λ x1 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
0
)
)
(
famunion
omega
(
λ x1 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
1
)
)
)
)
x0
⟶
False
Known
sqrt_SNo_nonneg_prop1e
sqrt_SNo_nonneg_prop1e
:
∀ x0 .
SNo
x0
⟶
SNoLe
0
x0
⟶
(
∀ x1 .
x1
∈
SNoS_
(
SNoLev
x0
)
⟶
SNoLe
0
x1
⟶
and
(
and
(
SNo
(
sqrt_SNo_nonneg
x1
)
)
(
SNoLe
0
(
sqrt_SNo_nonneg
x1
)
)
)
(
mul_SNo
(
sqrt_SNo_nonneg
x1
)
(
sqrt_SNo_nonneg
x1
)
=
x1
)
)
⟶
SNoCutP
(
famunion
omega
(
λ x1 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
0
)
)
(
famunion
omega
(
λ x1 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
1
)
)
⟶
SNoLe
0
(
SNoCut
(
famunion
omega
(
λ x1 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
0
)
)
(
famunion
omega
(
λ x1 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
1
)
)
)
⟶
SNoLt
x0
(
mul_SNo
(
SNoCut
(
famunion
omega
(
λ x1 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
0
)
)
(
famunion
omega
(
λ x1 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
1
)
)
)
(
SNoCut
(
famunion
omega
(
λ x1 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
0
)
)
(
famunion
omega
(
λ x1 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
1
)
)
)
)
⟶
False
Known
famunionE_impred
famunionE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
famunion
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
∈
x1
x4
⟶
x3
)
⟶
x3
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Theorem
sqrt_SNo_nonneg_prop1
sqrt_SNo_nonneg_prop1
:
∀ x0 .
SNo
x0
⟶
SNoLe
0
x0
⟶
and
(
and
(
SNo
(
sqrt_SNo_nonneg
x0
)
)
(
SNoLe
0
(
sqrt_SNo_nonneg
x0
)
)
)
(
mul_SNo
(
sqrt_SNo_nonneg
x0
)
(
sqrt_SNo_nonneg
x0
)
=
x0
)
(proof)
Param
ordinal
ordinal
:
ι
→
ο
Param
SNo_
SNo_
:
ι
→
ι
→
ο
Known
SNoS_E2
SNoS_E2
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
SNoS_
x0
⟶
∀ x2 : ο .
(
SNoLev
x1
∈
x0
⟶
ordinal
(
SNoLev
x1
)
⟶
SNo
x1
⟶
SNo_
(
SNoLev
x1
)
x1
⟶
x2
)
⟶
x2
Known
SNoLev_ordinal
SNoLev_ordinal
:
∀ x0 .
SNo
x0
⟶
ordinal
(
SNoLev
x0
)
Theorem
SNo_sqrtaux_0_1_prop
SNo_sqrtaux_0_1_prop
:
∀ x0 .
SNo
x0
⟶
SNoLe
0
x0
⟶
∀ x1 .
nat_p
x1
⟶
and
(
∀ x2 .
x2
∈
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
0
⟶
and
(
and
(
SNo
x2
)
(
SNoLe
0
x2
)
)
(
SNoLt
(
mul_SNo
x2
x2
)
x0
)
)
(
∀ x2 .
x2
∈
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
1
⟶
and
(
and
(
SNo
x2
)
(
SNoLe
0
x2
)
)
(
SNoLt
x0
(
mul_SNo
x2
x2
)
)
)
(proof)
Theorem
SNo_sqrtaux_0_prop
SNo_sqrtaux_0_prop
:
∀ x0 .
SNo
x0
⟶
SNoLe
0
x0
⟶
∀ x1 .
nat_p
x1
⟶
∀ x2 .
x2
∈
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
0
⟶
and
(
and
(
SNo
x2
)
(
SNoLe
0
x2
)
)
(
SNoLt
(
mul_SNo
x2
x2
)
x0
)
(proof)
Theorem
SNo_sqrtaux_1_prop
SNo_sqrtaux_1_prop
:
∀ x0 .
SNo
x0
⟶
SNoLe
0
x0
⟶
∀ x1 .
nat_p
x1
⟶
∀ x2 .
x2
∈
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
1
⟶
and
(
and
(
SNo
x2
)
(
SNoLe
0
x2
)
)
(
SNoLt
x0
(
mul_SNo
x2
x2
)
)
(proof)
Theorem
SNo_sqrt_SNo_SNoCutP
SNo_sqrt_SNo_SNoCutP
:
∀ x0 .
SNo
x0
⟶
SNoLe
0
x0
⟶
SNoCutP
(
famunion
omega
(
λ x1 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
0
)
)
(
famunion
omega
(
λ x1 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
1
)
)
(proof)
Theorem
SNo_sqrt_SNo_nonneg
SNo_sqrt_SNo_nonneg
:
∀ x0 .
SNo
x0
⟶
SNoLe
0
x0
⟶
SNo
(
sqrt_SNo_nonneg
x0
)
(proof)
Theorem
sqrt_SNo_nonneg_nonneg
sqrt_SNo_nonneg_nonneg
:
∀ x0 .
SNo
x0
⟶
SNoLe
0
x0
⟶
SNoLe
0
(
sqrt_SNo_nonneg
x0
)
(proof)
Theorem
sqrt_SNo_nonneg_sqr
sqrt_SNo_nonneg_sqr
:
∀ x0 .
SNo
x0
⟶
SNoLe
0
x0
⟶
mul_SNo
(
sqrt_SNo_nonneg
x0
)
(
sqrt_SNo_nonneg
x0
)
=
x0
(proof)
Known
SNo_0
SNo_0
:
SNo
0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
Empty_eq
Empty_eq
:
∀ x0 .
(
∀ x1 .
nIn
x1
x0
)
⟶
x0
=
0
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Known
SNoCut_0_0
SNoCut_0_0
:
SNoCut
0
0
=
0
Known
nat_ind
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Param
SNoL
SNoL
:
ι
→
ι
Definition
SNoL_nonneg
SNoL_nonneg
:=
λ x0 .
Sep
(
SNoL
x0
)
(
SNoLe
0
)
Param
SNoR
SNoR
:
ι
→
ι
Known
SNo_sqrtaux_0
SNo_sqrtaux_0
:
∀ x0 .
∀ x1 :
ι → ι
.
SNo_sqrtaux
x0
x1
0
=
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
(
prim5
(
SNoL_nonneg
x0
)
x1
)
(
prim5
(
SNoR
x0
)
x1
)
)
Known
tuple_2_0_eq
tuple_2_0_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
0
=
x0
Known
SNoL_nonneg_0
SNoL_nonneg_0
:
SNoL_nonneg
0
=
0
Known
Repl_Empty
Repl_Empty
:
∀ x0 :
ι → ι
.
prim5
0
x0
=
0
Known
tuple_2_1_eq
tuple_2_1_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
1
=
x1
Known
SNoR_0
SNoR_0
:
SNoR
0
=
0
Param
SNo_sqrtauxset
SNo_sqrtauxset
:
ι
→
ι
→
ι
→
ι
Known
SNo_sqrtaux_S
SNo_sqrtaux_S
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
nat_p
x2
⟶
SNo_sqrtaux
x0
x1
(
ordsucc
x2
)
=
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
(
binunion
(
ap
(
SNo_sqrtaux
x0
x1
x2
)
0
)
(
SNo_sqrtauxset
(
ap
(
SNo_sqrtaux
x0
x1
x2
)
0
)
(
ap
(
SNo_sqrtaux
x0
x1
x2
)
1
)
x0
)
)
(
binunion
(
binunion
(
ap
(
SNo_sqrtaux
x0
x1
x2
)
1
)
(
SNo_sqrtauxset
(
ap
(
SNo_sqrtaux
x0
x1
x2
)
0
)
(
ap
(
SNo_sqrtaux
x0
x1
x2
)
0
)
x0
)
)
(
SNo_sqrtauxset
(
ap
(
SNo_sqrtaux
x0
x1
x2
)
1
)
(
ap
(
SNo_sqrtaux
x0
x1
x2
)
1
)
x0
)
)
)
Known
SNo_sqrtauxset_0
SNo_sqrtauxset_0
:
∀ x0 x1 .
SNo_sqrtauxset
0
x0
x1
=
0
Known
binunion_idl
binunion_idl
:
∀ x0 .
binunion
0
x0
=
x0
Theorem
sqrt_SNo_nonneg_0
sqrt_SNo_nonneg_0
:
sqrt_SNo_nonneg
0
=
0
(proof)
Known
SNo_1
SNo_1
:
SNo
1
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Known
cases_1
cases_1
:
∀ x0 .
x0
∈
1
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
x0
Known
famunionI
famunionI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
x0
⟶
x3
∈
x1
x2
⟶
x3
∈
famunion
x0
x1
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
nat_0
nat_0
:
nat_p
0
Known
In_0_1
In_0_1
:
0
∈
1
Known
SNoL_1
SNoL_1
:
SNoL
1
=
1
Known
SNoR_1
SNoR_1
:
SNoR
1
=
0
Known
SNo_eta
SNo_eta
:
∀ x0 .
SNo
x0
⟶
x0
=
SNoCut
(
SNoL
x0
)
(
SNoR
x0
)
Known
SNoL_nonneg_1
SNoL_nonneg_1
:
SNoL_nonneg
1
=
1
Known
ReplE_impred
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Known
ReplI
ReplI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
prim5
x0
x1
Known
SNo_sqrtauxset_0'
SNo_sqrtauxset_0
:
∀ x0 x1 .
SNo_sqrtauxset
x0
0
x1
=
0
Known
binunion_idr
binunion_idr
:
∀ x0 .
binunion
x0
0
=
x0
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Param
div_SNo
div_SNo
:
ι
→
ι
→
ι
Known
SNo_sqrtauxset_E
SNo_sqrtauxset_E
:
∀ x0 x1 x2 x3 .
x3
∈
SNo_sqrtauxset
x0
x1
x2
⟶
∀ x4 : ο .
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x1
⟶
SNoLt
0
(
add_SNo
x5
x6
)
⟶
x3
=
div_SNo
(
add_SNo
x2
(
mul_SNo
x5
x6
)
)
(
add_SNo
x5
x6
)
⟶
x4
)
⟶
x4
Known
add_SNo_0R
add_SNo_0R
:
∀ x0 .
SNo
x0
⟶
add_SNo
x0
0
=
x0
Known
SNoLt_irref
SNoLt_irref
:
∀ x0 .
not
(
SNoLt
x0
x0
)
Theorem
sqrt_SNo_nonneg_1
sqrt_SNo_nonneg_1
:
sqrt_SNo_nonneg
1
=
1
(proof)
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
SNoL_I
SNoL_I
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x1
x0
⟶
x1
∈
SNoL
x0
Known
SNoLev_0
SNoLev_0
:
SNoLev
0
=
0
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
SNoLeE
SNoLeE
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLe
x0
x1
⟶
or
(
SNoLt
x0
x1
)
(
x0
=
x1
)
Known
SNoLe_ref
SNoLe_ref
:
∀ x0 .
SNoLe
x0
x0
Theorem
sqrt_SNo_nonneg_0inL0
sqrt_SNo_nonneg_0inL0
:
∀ x0 .
SNo
x0
⟶
SNoLe
0
x0
⟶
0
∈
SNoLev
x0
⟶
0
∈
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
0
)
0
(proof)
Theorem
sqrt_SNo_nonneg_Lnonempty
sqrt_SNo_nonneg_Lnonempty
:
∀ x0 .
SNo
x0
⟶
SNoLe
0
x0
⟶
0
∈
SNoLev
x0
⟶
famunion
omega
(
λ x2 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x2
)
0
)
=
0
⟶
∀ x1 : ο .
x1
(proof)
Known
SNoR_I
SNoR_I
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x0
x1
⟶
x1
∈
SNoR
x0
Known
ordinal_SNoLev
ordinal_SNoLev
:
∀ x0 .
ordinal
x0
⟶
SNoLev
x0
=
x0
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
nat_1
nat_1
:
nat_p
1
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Known
binunionI1
binunionI1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
binunion
x0
x1
Known
binunionI2
binunionI2
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
x2
∈
binunion
x0
x1
Known
SNo_sqrtauxset_I
SNo_sqrtauxset_I
:
∀ x0 x1 x2 x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x1
⟶
SNoLt
0
(
add_SNo
x3
x4
)
⟶
div_SNo
(
add_SNo
x2
(
mul_SNo
x3
x4
)
)
(
add_SNo
x3
x4
)
∈
SNo_sqrtauxset
x0
x1
x2
Known
SNoLtLe
SNoLtLe
:
∀ x0 x1 .
SNoLt
x0
x1
⟶
SNoLe
x0
x1
Known
SNoLt_0_1
SNoLt_0_1
:
SNoLt
0
1
Definition
TransSet
TransSet
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Known
ordinal_TransSet
ordinal_TransSet
:
∀ x0 .
ordinal
x0
⟶
TransSet
x0
Theorem
sqrt_SNo_nonneg_Rnonempty
sqrt_SNo_nonneg_Rnonempty
:
∀ x0 .
SNo
x0
⟶
SNoLe
0
x0
⟶
1
∈
SNoLev
x0
⟶
famunion
omega
(
λ x2 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x2
)
1
)
=
0
⟶
∀ x1 : ο .
x1
(proof)