Search for blocks/addresses/...

Proofgold Signed Transaction

vin
Pr7tr../ab8ea..
PUVYR../c2d61..
vout
Pr7tr../c5c3f.. 6.25 bars
TMPRk../482d6.. ownership of 697c6.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMHTS../4115b.. ownership of 5b753.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMLsc../59745.. ownership of 46dcf.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMRog../56e9c.. ownership of aae4e.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMKX1../308db.. ownership of b8b19.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMEmd../9b27e.. ownership of 8aec7.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMM8F../89697.. ownership of 0d7c6.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMcDK../a4f2c.. ownership of 7bf6e.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMSZ3../9ef54.. ownership of 42643.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMMmG../8a687.. ownership of 9555e.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMQFj../bb362.. ownership of 95eb4.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMVhH../1eeea.. ownership of 678f2.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMRrE../08037.. ownership of 1dc5a.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMKaD../7d418.. ownership of 11c61.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMHS8../1d5c1.. ownership of d2050.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMHep../75c15.. ownership of 6f924.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMUhR../5797d.. ownership of 9dddc.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMa2k../6548b.. ownership of 3f387.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMV7j../4e595.. ownership of 78a3e.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMJzP../2d3a7.. ownership of ed9ae.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
PUKAr../8e079.. doc published by Pr4zB..
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param ordsuccordsucc : ιι
Known Power_SubqPower_Subq : ∀ x0 x1 . x0x1prim4 x0prim4 x1
Known ordsuccI1ordsuccI1 : ∀ x0 . x0ordsucc x0
Theorem 78a3e.. : ∀ x0 . prim4 x0prim4 (ordsucc x0) (proof)
Param bijbij : ιι(ιι) → ο
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Known bijIbijI : ∀ x0 x1 . ∀ x2 : ι → ι . (∀ x3 . x3x0x2 x3x1)(∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)(∀ x3 . x3x1∀ x4 : ο . (∀ x5 . and (x5x0) (x2 x5 = x3)x4)x4)bij x0 x1 x2
Known ReplIReplI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0x1 x2prim5 x0 x1
Known ReplE_impredReplE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2prim5 x0 x1∀ x3 : ο . (∀ x4 . x4x0x2 = x1 x4x3)x3
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Theorem 9dddc.. : ∀ x0 . ∀ x1 : ι → ι . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 = x1 x3x2 = x3)bij x0 (prim5 x0 x1) x1 (proof)
Definition equipequip := λ x0 x1 . ∀ x2 : ο . (∀ x3 : ι → ι . bij x0 x1 x3x2)x2
Theorem d2050.. : ∀ x0 . ∀ x1 : ι → ι . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 = x1 x3x2 = x3)equip x0 (prim5 x0 x1) (proof)
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Definition injinj := λ x0 x1 . λ x2 : ι → ι . and (∀ x3 . x3x0x2 x3x1) (∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)
Definition atleastpatleastp := λ x0 x1 . ∀ x2 : ο . (∀ x3 : ι → ι . inj x0 x1 x3x2)x2
Param binunionbinunion : ιιι
Param SingSing : ιι
Param If_iIf_i : οιιι
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known ordsuccEordsuccE : ∀ x0 x1 . x1ordsucc x0or (x1x0) (x1 = x0)
Known If_i_1If_i_1 : ∀ x0 : ο . ∀ x1 x2 . x0If_i x0 x1 x2 = x1
Known binunionI1binunionI1 : ∀ x0 x1 x2 . x2x0x2binunion x0 x1
Known If_i_0If_i_0 : ∀ x0 : ο . ∀ x1 x2 . not x0If_i x0 x1 x2 = x2
Known binunionI2binunionI2 : ∀ x0 x1 x2 . x2x1x2binunion x0 x1
Known SingISingI : ∀ x0 . x0Sing x0
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Theorem 1dc5a.. : ∀ x0 x1 x2 . nIn x2 x1atleastp x0 x1atleastp (ordsucc x0) (binunion x1 (Sing x2)) (proof)
Definition TwoRamseyProp_atleastp := λ x0 x1 x2 . ∀ x3 : ι → ι → ο . (∀ x4 x5 . x3 x4 x5x3 x5 x4)or (∀ x4 : ο . (∀ x5 . and (x5x2) (and (atleastp x0 x5) (∀ x6 . x6x5∀ x7 . x7x5(x6 = x7∀ x8 : ο . x8)x3 x6 x7))x4)x4) (∀ x4 : ο . (∀ x5 . and (x5x2) (and (atleastp x1 x5) (∀ x6 . x6x5∀ x7 . x7x5(x6 = x7∀ x8 : ο . x8)not (x3 x6 x7)))x4)x4)
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known orIRorIR : ∀ x0 x1 : ο . x1or x0 x1
Known Subq_refSubq_ref : ∀ x0 . x0x0
Known atleastp_ref : ∀ x0 . atleastp x0 x0
Known orILorIL : ∀ x0 x1 : ο . x0or x0 x1
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Param UPairUPair : ιιι
Known UPairEUPairE : ∀ x0 x1 x2 . x0UPair x1 x2or (x0 = x1) (x0 = x2)
Param apap : ιιι
Param lamSigma : ι(ιι) → ι
Known cases_2cases_2 : ∀ x0 . x02∀ x1 : ι → ο . x1 0x1 1x1 x0
Known tuple_2_0_eqtuple_2_0_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 0 = x0
Known UPairI1UPairI1 : ∀ x0 x1 . x0UPair x0 x1
Known tuple_2_1_eqtuple_2_1_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 1 = x1
Known UPairI2UPairI2 : ∀ x0 x1 . x1UPair x0 x1
Known FalseEFalseE : False∀ x0 : ο . x0
Theorem 95eb4.. : ∀ x0 . TwoRamseyProp_atleastp 2 x0 x0 (proof)
Theorem 42643.. : ∀ x0 x1 x2 . TwoRamseyProp_atleastp x0 x1 x2TwoRamseyProp_atleastp x1 x0 x2 (proof)
Definition TwoRamseyPropTwoRamseyProp := λ x0 x1 x2 . ∀ x3 : ι → ι → ο . (∀ x4 x5 . x3 x4 x5x3 x5 x4)or (∀ x4 : ο . (∀ x5 . and (x5x2) (and (equip x0 x5) (∀ x6 . x6x5∀ x7 . x7x5(x6 = x7∀ x8 : ο . x8)x3 x6 x7))x4)x4) (∀ x4 : ο . (∀ x5 . and (x5x2) (and (equip x1 x5) (∀ x6 . x6x5∀ x7 . x7x5(x6 = x7∀ x8 : ο . x8)not (x3 x6 x7)))x4)x4)
Theorem 0d7c6.. : ∀ x0 x1 x2 . TwoRamseyProp x0 x1 x2TwoRamseyProp x1 x0 x2 (proof)
Theorem b8b19.. : ∀ x0 x1 x2 . TwoRamseyProp_atleastp x0 x1 x2TwoRamseyProp x0 x1 x2 (proof)
Known equip_traequip_tra : ∀ x0 x1 x2 . equip x0 x1equip x1 x2equip x0 x2
Theorem 46dcf.. : ∀ x0 x1 x2 x3 . atleastp x2 x3TwoRamseyProp x0 x1 x2TwoRamseyProp x0 x1 x3 (proof)
Known Subq_atleastpSubq_atleastp : ∀ x0 x1 . x0x1atleastp x0 x1
Theorem 697c6.. : ∀ x0 x1 x2 x3 . x2x3TwoRamseyProp x0 x1 x2TwoRamseyProp x0 x1 x3 (proof)