Search for blocks/addresses/...

Proofgold Proposition

∀ x0 : ((ι → (ι → ι → ι) → ι)(ι → ι → ι → ι) → ι)(ι → ι → ι → ι → ι)(ι → ι → ι) → ι . ∀ x1 : (ι → ι → ι)(((ι → ι → ι) → ι) → ι)ι → (ι → ι)ι → ι → ι . ∀ x2 : ((ι → ((ι → ι) → ι)ι → ι)((ι → ι → ι) → ι) → ι)((ι → ι) → ι) → ι . ∀ x3 : ((((ι → ι) → ι)ι → (ι → ι)ι → ι) → ι)((ι → ι) → ι)ι → ι → ι → ι . (∀ x4 . ∀ x5 : ((ι → ι → ι) → ι)ι → ι . ∀ x6 . ∀ x7 : ι → ι . x3 (λ x9 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . 0) (λ x9 : ι → ι . 0) 0 x6 (x1 (λ x9 x10 . setsum 0 (x3 (λ x11 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . setsum 0 0) (λ x11 : ι → ι . x9) (x0 (λ x11 : ι → (ι → ι → ι) → ι . λ x12 : ι → ι → ι → ι . 0) (λ x11 x12 x13 x14 . 0) (λ x11 x12 . 0)) (x0 (λ x11 : ι → (ι → ι → ι) → ι . λ x12 : ι → ι → ι → ι . 0) (λ x11 x12 x13 x14 . 0) (λ x11 x12 . 0)) (x1 (λ x11 x12 . 0) (λ x11 : (ι → ι → ι) → ι . 0) 0 (λ x11 . 0) 0 0))) (λ x9 : (ι → ι → ι) → ι . x3 (λ x10 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . Inj1 (Inj0 0)) (λ x10 : ι → ι . x1 (λ x11 x12 . 0) (λ x11 : (ι → ι → ι) → ι . x1 (λ x12 x13 . 0) (λ x12 : (ι → ι → ι) → ι . 0) 0 (λ x12 . 0) 0 0) (x10 0) (λ x11 . 0) (x3 (λ x11 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . 0) (λ x11 : ι → ι . 0) 0 0 0) (x10 0)) (x0 (λ x10 : ι → (ι → ι → ι) → ι . λ x11 : ι → ι → ι → ι . x1 (λ x12 x13 . 0) (λ x12 : (ι → ι → ι) → ι . 0) 0 (λ x12 . 0) 0 0) (λ x10 x11 x12 x13 . x10) (λ x10 x11 . Inj1 0)) (x7 0) (x2 (λ x10 : ι → ((ι → ι) → ι)ι → ι . λ x11 : (ι → ι → ι) → ι . 0) (λ x10 : ι → ι . x0 (λ x11 : ι → (ι → ι → ι) → ι . λ x12 : ι → ι → ι → ι . 0) (λ x11 x12 x13 x14 . 0) (λ x11 x12 . 0)))) (x1 (λ x9 x10 . 0) (λ x9 : (ι → ι → ι) → ι . x5 (λ x10 : ι → ι → ι . 0) (x0 (λ x10 : ι → (ι → ι → ι) → ι . λ x11 : ι → ι → ι → ι . 0) (λ x10 x11 x12 x13 . 0) (λ x10 x11 . 0))) (x0 (λ x9 : ι → (ι → ι → ι) → ι . λ x10 : ι → ι → ι → ι . x6) (λ x9 x10 x11 x12 . setsum 0 0) (λ x9 x10 . Inj0 0)) (λ x9 . 0) (Inj0 (x3 (λ x9 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . 0) (λ x9 : ι → ι . 0) 0 0 0)) (x1 (λ x9 x10 . 0) (λ x9 : (ι → ι → ι) → ι . x7 0) (x2 (λ x9 : ι → ((ι → ι) → ι)ι → ι . λ x10 : (ι → ι → ι) → ι . 0) (λ x9 : ι → ι . 0)) (λ x9 . x2 (λ x10 : ι → ((ι → ι) → ι)ι → ι . λ x11 : (ι → ι → ι) → ι . 0) (λ x10 : ι → ι . 0)) (x3 (λ x9 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . 0) (λ x9 : ι → ι . 0) 0 0 0) (x0 (λ x9 : ι → (ι → ι → ι) → ι . λ x10 : ι → ι → ι → ι . 0) (λ x9 x10 x11 x12 . 0) (λ x9 x10 . 0)))) (λ x9 . Inj1 0) (x2 (λ x9 : ι → ((ι → ι) → ι)ι → ι . λ x10 : (ι → ι → ι) → ι . 0) (λ x9 : ι → ι . x0 (λ x10 : ι → (ι → ι → ι) → ι . λ x11 : ι → ι → ι → ι . x9 0) (λ x10 x11 x12 x13 . x2 (λ x14 : ι → ((ι → ι) → ι)ι → ι . λ x15 : (ι → ι → ι) → ι . 0) (λ x14 : ι → ι . 0)) (λ x10 x11 . Inj0 0))) (x5 (λ x9 : ι → ι → ι . setsum (x9 0 0) (x5 (λ x10 : ι → ι → ι . 0) 0)) 0)) = x6)(∀ x4 x5 x6 x7 . x3 (λ x9 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . setsum 0 (x1 (λ x10 x11 . x0 (λ x12 : ι → (ι → ι → ι) → ι . λ x13 : ι → ι → ι → ι . x2 (λ x14 : ι → ((ι → ι) → ι)ι → ι . λ x15 : (ι → ι → ι) → ι . 0) (λ x14 : ι → ι . 0)) (λ x12 x13 x14 x15 . x0 (λ x16 : ι → (ι → ι → ι) → ι . λ x17 : ι → ι → ι → ι . 0) (λ x16 x17 x18 x19 . 0) (λ x16 x17 . 0)) (λ x12 x13 . x3 (λ x14 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . 0) (λ x14 : ι → ι . 0) 0 0 0)) (λ x10 : (ι → ι → ι) → ι . x10 (λ x11 x12 . setsum 0 0)) (setsum (x3 (λ x10 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . 0) (λ x10 : ι → ι . 0) 0 0 0) 0) (λ x10 . x0 (λ x11 : ι → (ι → ι → ι) → ι . λ x12 : ι → ι → ι → ι . x11 0 (λ x13 x14 . 0)) (λ x11 x12 x13 x14 . 0) (λ x11 x12 . 0)) (setsum (x9 (λ x10 : ι → ι . 0) 0 (λ x10 . 0) 0) (setsum 0 0)) (Inj0 x7))) (λ x9 : ι → ι . x0 (λ x10 : ι → (ι → ι → ι) → ι . λ x11 : ι → ι → ι → ι . 0) (λ x10 x11 x12 x13 . x1 (λ x14 x15 . x13) (λ x14 : (ι → ι → ι) → ι . x11) 0 (λ x14 . x2 (λ x15 : ι → ((ι → ι) → ι)ι → ι . λ x16 : (ι → ι → ι) → ι . x0 (λ x17 : ι → (ι → ι → ι) → ι . λ x18 : ι → ι → ι → ι . 0) (λ x17 x18 x19 x20 . 0) (λ x17 x18 . 0)) (λ x15 : ι → ι . 0)) (x3 (λ x14 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . x3 (λ x15 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . 0) (λ x15 : ι → ι . 0) 0 0 0) (λ x14 : ι → ι . Inj1 0) 0 0 (Inj0 0)) (setsum x12 (x3 (λ x14 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . 0) (λ x14 : ι → ι . 0) 0 0 0))) (λ x10 x11 . Inj0 x10)) 0 (Inj1 (x1 (λ x9 x10 . Inj1 (Inj1 0)) (λ x9 : (ι → ι → ι) → ι . x0 (λ x10 : ι → (ι → ι → ι) → ι . λ x11 : ι → ι → ι → ι . x3 (λ x12 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . 0) (λ x12 : ι → ι . 0) 0 0 0) (λ x10 x11 x12 x13 . Inj1 0) (λ x10 x11 . 0)) (setsum (x3 (λ x9 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . 0) (λ x9 : ι → ι . 0) 0 0 0) 0) (λ x9 . x0 (λ x10 : ι → (ι → ι → ι) → ι . λ x11 : ι → ι → ι → ι . x7) (λ x10 x11 x12 x13 . 0) (λ x10 x11 . 0)) (setsum (x3 (λ x9 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . 0) (λ x9 : ι → ι . 0) 0 0 0) 0) (x0 (λ x9 : ι → (ι → ι → ι) → ι . λ x10 : ι → ι → ι → ι . x2 (λ x11 : ι → ((ι → ι) → ι)ι → ι . λ x12 : (ι → ι → ι) → ι . 0) (λ x11 : ι → ι . 0)) (λ x9 x10 x11 x12 . Inj0 0) (λ x9 x10 . x6)))) (Inj0 x7) = x0 (λ x9 : ι → (ι → ι → ι) → ι . λ x10 : ι → ι → ι → ι . Inj0 (Inj0 0)) (λ x9 x10 x11 x12 . x1 (λ x13 x14 . x13) (λ x13 : (ι → ι → ι) → ι . 0) 0 (λ x13 . x2 (λ x14 : ι → ((ι → ι) → ι)ι → ι . λ x15 : (ι → ι → ι) → ι . x0 (λ x16 : ι → (ι → ι → ι) → ι . λ x17 : ι → ι → ι → ι . setsum 0 0) (λ x16 x17 x18 x19 . x19) (λ x16 x17 . x1 (λ x18 x19 . 0) (λ x18 : (ι → ι → ι) → ι . 0) 0 (λ x18 . 0) 0 0)) (λ x14 : ι → ι . x3 (λ x15 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . x1 (λ x16 x17 . 0) (λ x16 : (ι → ι → ι) → ι . 0) 0 (λ x16 . 0) 0 0) (λ x15 : ι → ι . x0 (λ x16 : ι → (ι → ι → ι) → ι . λ x17 : ι → ι → ι → ι . 0) (λ x16 x17 x18 x19 . 0) (λ x16 x17 . 0)) (Inj1 0) 0 (setsum 0 0))) (Inj1 0) 0) (λ x9 x10 . setsum 0 (x3 (λ x11 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . setsum 0 0) (λ x11 : ι → ι . x10) (Inj1 (Inj1 0)) x6 (x1 (λ x11 x12 . x11) (λ x11 : (ι → ι → ι) → ι . x10) x10 (λ x11 . setsum 0 0) (x1 (λ x11 x12 . 0) (λ x11 : (ι → ι → ι) → ι . 0) 0 (λ x11 . 0) 0 0) x7))))(∀ x4 : ((ι → ι → ι)(ι → ι)ι → ι) → ι . ∀ x5 . ∀ x6 : ι → ι . ∀ x7 . x2 (λ x9 : ι → ((ι → ι) → ι)ι → ι . λ x10 : (ι → ι → ι) → ι . x10 (λ x11 x12 . 0)) (λ x9 : ι → ι . 0) = x5)(∀ x4 : ι → ((ι → ι)ι → ι) → ι . ∀ x5 : ι → ι → ι → ι → ι . ∀ x6 : (ι → (ι → ι)ι → ι)((ι → ι) → ι) → ι . ∀ x7 . x2 (λ x9 : ι → ((ι → ι) → ι)ι → ι . λ x10 : (ι → ι → ι) → ι . 0) (λ x9 : ι → ι . 0) = Inj0 (x5 (x6 (λ x9 . λ x10 : ι → ι . λ x11 . setsum 0 0) (λ x9 : ι → ι . x6 (λ x10 . λ x11 : ι → ι . λ x12 . Inj0 0) (λ x10 : ι → ι . Inj0 0))) 0 0 (x4 0 (λ x9 : ι → ι . λ x10 . setsum (x0 (λ x11 : ι → (ι → ι → ι) → ι . λ x12 : ι → ι → ι → ι . 0) (λ x11 x12 x13 x14 . 0) (λ x11 x12 . 0)) (x3 (λ x11 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . 0) (λ x11 : ι → ι . 0) 0 0 0)))))(∀ x4 x5 . ∀ x6 : (ι → (ι → ι) → ι)ι → ι → ι . ∀ x7 . x1 (λ x9 x10 . x9) (λ x9 : (ι → ι → ι) → ι . Inj0 (x6 (λ x10 . λ x11 : ι → ι . x10) 0 (x3 (λ x10 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . 0) (λ x10 : ι → ι . x9 (λ x11 x12 . 0)) x5 (Inj1 0) (setsum 0 0)))) (setsum (setsum (setsum (Inj0 0) (Inj0 0)) (setsum (setsum 0 0) (setsum 0 0))) x4) (λ x9 . setsum (x1 (λ x10 x11 . x10) (λ x10 : (ι → ι → ι) → ι . x10 (λ x11 x12 . 0)) (x1 (λ x10 x11 . x7) (λ x10 : (ι → ι → ι) → ι . 0) (x3 (λ x10 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . 0) (λ x10 : ι → ι . 0) 0 0 0) (λ x10 . Inj0 0) 0 (Inj0 0)) (λ x10 . x7) (x0 (λ x10 : ι → (ι → ι → ι) → ι . λ x11 : ι → ι → ι → ι . Inj1 0) (λ x10 x11 x12 x13 . 0) (λ x10 x11 . x1 (λ x12 x13 . 0) (λ x12 : (ι → ι → ι) → ι . 0) 0 (λ x12 . 0) 0 0)) x7) (Inj1 x5)) (x6 (λ x9 . λ x10 : ι → ι . x9) (setsum (Inj0 (x3 (λ x9 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . 0) (λ x9 : ι → ι . 0) 0 0 0)) 0) (x1 (λ x9 x10 . x0 (λ x11 : ι → (ι → ι → ι) → ι . λ x12 : ι → ι → ι → ι . setsum 0 0) (λ x11 x12 x13 x14 . x12) (λ x11 x12 . setsum 0 0)) (λ x9 : (ι → ι → ι) → ι . x0 (λ x10 : ι → (ι → ι → ι) → ι . λ x11 : ι → ι → ι → ι . setsum 0 0) (λ x10 x11 x12 x13 . setsum 0 0) (λ x10 x11 . setsum 0 0)) (setsum 0 (x1 (λ x9 x10 . 0) (λ x9 : (ι → ι → ι) → ι . 0) 0 (λ x9 . 0) 0 0)) (λ x9 . Inj0 (x1 (λ x10 x11 . 0) (λ x10 : (ι → ι → ι) → ι . 0) 0 (λ x10 . 0) 0 0)) (x2 (λ x9 : ι → ((ι → ι) → ι)ι → ι . λ x10 : (ι → ι → ι) → ι . Inj1 0) (λ x9 : ι → ι . x9 0)) (Inj0 (Inj0 0)))) x4 = x4)(∀ x4 . ∀ x5 : ι → (ι → ι)(ι → ι)ι → ι . ∀ x6 x7 . x1 (λ x9 x10 . x9) (λ x9 : (ι → ι → ι) → ι . x7) 0 (λ x9 . x5 (x5 x9 (λ x10 . x3 (λ x11 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . 0) (λ x11 : ι → ι . Inj1 0) (setsum 0 0) (x0 (λ x11 : ι → (ι → ι → ι) → ι . λ x12 : ι → ι → ι → ι . 0) (λ x11 x12 x13 x14 . 0) (λ x11 x12 . 0)) (setsum 0 0)) Inj1 0) (λ x10 . 0) (λ x10 . x6) 0) x7 (x1 (λ x9 x10 . x7) (λ x9 : (ι → ι → ι) → ι . Inj1 x6) x7 (λ x9 . x5 0 (λ x10 . setsum 0 x6) (λ x10 . x9) (Inj1 (x3 (λ x10 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . 0) (λ x10 : ι → ι . 0) 0 0 0))) (Inj1 (x3 (λ x9 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . setsum 0 0) (λ x9 : ι → ι . x1 (λ x10 x11 . 0) (λ x10 : (ι → ι → ι) → ι . 0) 0 (λ x10 . 0) 0 0) (setsum 0 0) (x0 (λ x9 : ι → (ι → ι → ι) → ι . λ x10 : ι → ι → ι → ι . 0) (λ x9 x10 x11 x12 . 0) (λ x9 x10 . 0)) (setsum 0 0))) (setsum (x0 (λ x9 : ι → (ι → ι → ι) → ι . λ x10 : ι → ι → ι → ι . x2 (λ x11 : ι → ((ι → ι) → ι)ι → ι . λ x12 : (ι → ι → ι) → ι . 0) (λ x11 : ι → ι . 0)) (λ x9 x10 x11 x12 . 0) (λ x9 x10 . 0)) (x0 (λ x9 : ι → (ι → ι → ι) → ι . λ x10 : ι → ι → ι → ι . 0) (λ x9 x10 x11 x12 . x1 (λ x13 x14 . 0) (λ x13 : (ι → ι → ι) → ι . 0) 0 (λ x13 . 0) 0 0) (λ x9 x10 . x3 (λ x11 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . 0) (λ x11 : ι → ι . 0) 0 0 0)))) = Inj0 x6)(∀ x4 . ∀ x5 : ι → ι . ∀ x6 : ((ι → ι)ι → ι) → ι . ∀ x7 : ι → ((ι → ι) → ι) → ι . x0 (λ x9 : ι → (ι → ι → ι) → ι . λ x10 : ι → ι → ι → ι . Inj0 (x3 (λ x11 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . x11 (λ x12 : ι → ι . setsum 0 0) (x2 (λ x12 : ι → ((ι → ι) → ι)ι → ι . λ x13 : (ι → ι → ι) → ι . 0) (λ x12 : ι → ι . 0)) (λ x12 . x10 0 0 0) (setsum 0 0)) (λ x11 : ι → ι . x0 (λ x12 : ι → (ι → ι → ι) → ι . λ x13 : ι → ι → ι → ι . setsum 0 0) (λ x12 x13 x14 x15 . x13) (λ x12 x13 . setsum 0 0)) (x10 (x1 (λ x11 x12 . 0) (λ x11 : (ι → ι → ι) → ι . 0) 0 (λ x11 . 0) 0 0) 0 0) (x3 (λ x11 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . 0) (λ x11 : ι → ι . 0) (setsum 0 0) (x6 (λ x11 : ι → ι . λ x12 . 0)) (x1 (λ x11 x12 . 0) (λ x11 : (ι → ι → ι) → ι . 0) 0 (λ x11 . 0) 0 0)) 0)) (λ x9 x10 x11 x12 . 0) (λ x9 x10 . Inj1 (Inj1 x9)) = setsum (setsum (x0 (λ x9 : ι → (ι → ι → ι) → ι . λ x10 : ι → ι → ι → ι . Inj1 (x10 0 0 0)) (λ x9 x10 x11 x12 . x10) (λ x9 x10 . x0 (λ x11 : ι → (ι → ι → ι) → ι . λ x12 : ι → ι → ι → ι . 0) (λ x11 x12 x13 x14 . x3 (λ x15 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . 0) (λ x15 : ι → ι . 0) 0 0 0) (λ x11 x12 . setsum 0 0))) (x6 (λ x9 : ι → ι . λ x10 . x0 (λ x11 : ι → (ι → ι → ι) → ι . λ x12 : ι → ι → ι → ι . x2 (λ x13 : ι → ((ι → ι) → ι)ι → ι . λ x14 : (ι → ι → ι) → ι . 0) (λ x13 : ι → ι . 0)) (λ x11 x12 x13 x14 . x0 (λ x15 : ι → (ι → ι → ι) → ι . λ x16 : ι → ι → ι → ι . 0) (λ x15 x16 x17 x18 . 0) (λ x15 x16 . 0)) (λ x11 x12 . setsum 0 0)))) (x7 0 (λ x9 : ι → ι . 0)))(∀ x4 : (ι → (ι → ι)ι → ι)((ι → ι) → ι)ι → ι → ι . ∀ x5 : (ι → ι)ι → ι . ∀ x6 x7 . x0 (λ x9 : ι → (ι → ι → ι) → ι . λ x10 : ι → ι → ι → ι . x2 (λ x11 : ι → ((ι → ι) → ι)ι → ι . λ x12 : (ι → ι → ι) → ι . x10 (x12 (λ x13 x14 . x3 (λ x15 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . 0) (λ x15 : ι → ι . 0) 0 0 0)) (x2 (λ x13 : ι → ((ι → ι) → ι)ι → ι . λ x14 : (ι → ι → ι) → ι . x11 0 (λ x15 : ι → ι . 0) 0) (λ x13 : ι → ι . x12 (λ x14 x15 . 0))) 0) (λ x11 : ι → ι . 0)) (λ x9 x10 x11 x12 . x12) (λ x9 x10 . x1 (λ x11 . x1 (λ x12 x13 . 0) (λ x12 : (ι → ι → ι) → ι . setsum (x12 (λ x13 x14 . 0)) x11) (x1 (λ x12 x13 . setsum 0 0) (λ x12 : (ι → ι → ι) → ι . x3 (λ x13 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . 0) (λ x13 : ι → ι . 0) 0 0 0) x9 (λ x12 . x3 (λ x13 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . 0) (λ x13 : ι → ι . 0) 0 0 0) (x3 (λ x12 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . 0) (λ x12 : ι → ι . 0) 0 0 0) x10) (λ x12 . 0) x11) (λ x11 : (ι → ι → ι) → ι . 0) (x1 (λ x11 x12 . x12) (λ x11 : (ι → ι → ι) → ι . x9) 0 (λ x11 . 0) x7 0) (λ x11 . 0) (x3 (λ x11 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . x9) (λ x11 : ι → ι . x0 (λ x12 : ι → (ι → ι → ι) → ι . λ x13 : ι → ι → ι → ι . x3 (λ x14 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . 0) (λ x14 : ι → ι . 0) 0 0 0) (λ x12 x13 x14 x15 . x12) (λ x12 x13 . x10)) (setsum x6 (x1 (λ x11 x12 . 0) (λ x11 : (ι → ι → ι) → ι . 0) 0 (λ x11 . 0) 0 0)) (x1 (λ x11 x12 . 0) (λ x11 : (ι → ι → ι) → ι . x11 (λ x12 x13 . 0)) 0 (λ x11 . x3 (λ x12 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . 0) (λ x12 : ι → ι . 0) 0 0 0) x9 x6) 0) 0) = setsum (x2 (λ x9 : ι → ((ι → ι) → ι)ι → ι . λ x10 : (ι → ι → ι) → ι . Inj0 0) (λ x9 : ι → ι . Inj0 0)) (x2 (λ x9 : ι → ((ι → ι) → ι)ι → ι . λ x10 : (ι → ι → ι) → ι . x9 (setsum 0 x7) (λ x11 : ι → ι . 0) (x2 (λ x11 : ι → ((ι → ι) → ι)ι → ι . λ x12 : (ι → ι → ι) → ι . x10 (λ x13 x14 . 0)) (λ x11 : ι → ι . 0))) (λ x9 : ι → ι . x2 (λ x10 : ι → ((ι → ι) → ι)ι → ι . λ x11 : (ι → ι → ι) → ι . x0 (λ x12 : ι → (ι → ι → ι) → ι . λ x13 : ι → ι → ι → ι . 0) (λ x12 x13 x14 x15 . x12) (λ x12 x13 . x1 (λ x14 x15 . 0) (λ x14 : (ι → ι → ι) → ι . 0) 0 (λ x14 . 0) 0 0)) (λ x10 : ι → ι . x2 (λ x11 : ι → ((ι → ι) → ι)ι → ι . λ x12 : (ι → ι → ι) → ι . x0 (λ x13 : ι → (ι → ι → ι) → ι . λ x14 : ι → ι → ι → ι . 0) (λ x13 x14 x15 x16 . 0) (λ x13 x14 . 0)) (λ x11 : ι → ι . x7)))))False
type
prop
theory
HF
name
-
proof
PUe4y..
Megalodon
-
proofgold address
TMJdn..
creator
11850 PrGVS../e2ec4..
owner
11850 PrGVS../e2ec4..
term root
a1de1..