Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrCUp..
/
55a63..
PUWUz..
/
84a8e..
vout
PrCUp..
/
ebbe0..
0.01 bars
TMUME..
/
43bd4..
ownership of
355d3..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUuu..
/
bbaa4..
ownership of
ae085..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMc1T..
/
02079..
ownership of
27f6a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdBt..
/
53a3a..
ownership of
20adc..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMQu..
/
94865..
ownership of
07ed2..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcYd..
/
2fe90..
ownership of
e28af..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJ2G..
/
db2ff..
ownership of
8ce93..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcoX..
/
9f75a..
ownership of
68fe9..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRPX..
/
fd0ce..
ownership of
1d401..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXqa..
/
471dd..
ownership of
824b8..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJxt..
/
e4da6..
ownership of
30df9..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbFQ..
/
67988..
ownership of
defc4..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJrZ..
/
4953d..
ownership of
d9411..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMN2t..
/
67a10..
ownership of
a469c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGpj..
/
81e67..
ownership of
cb7f5..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYu5..
/
f131c..
ownership of
6da66..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRda..
/
d694a..
ownership of
d4cbb..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLzB..
/
ecf14..
ownership of
17c3d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXFk..
/
6579d..
ownership of
447bb..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMM6B..
/
8c90d..
ownership of
ac0c5..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXxF..
/
c34d1..
ownership of
9f45f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMR7X..
/
3cbe5..
ownership of
b05b9..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMU5G..
/
79781..
ownership of
85c0e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJKS..
/
f2f6f..
ownership of
29e85..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPWG..
/
ea2d9..
ownership of
0ae7a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUCY..
/
a9b9e..
ownership of
57512..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWDk..
/
2948a..
ownership of
85f67..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJhe..
/
7e6ac..
ownership of
ec6ca..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZmj..
/
13876..
ownership of
2ccf7..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTdm..
/
e2b8e..
ownership of
4ba26..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMW5X..
/
50a93..
ownership of
eb987..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMac6..
/
b3b06..
ownership of
d24db..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHq7..
/
85a63..
ownership of
09271..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLZq..
/
91a58..
ownership of
d7d14..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdqS..
/
be5ad..
ownership of
7fd9f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKaF..
/
3e2ba..
ownership of
c51d1..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPMF..
/
340e9..
ownership of
2c799..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTvP..
/
909bb..
ownership of
fff64..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSLJ..
/
f7660..
ownership of
94387..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTLk..
/
3de38..
ownership of
281ca..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbHA..
/
8fec3..
ownership of
d492a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSWX..
/
458a2..
ownership of
dfe40..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMaV1..
/
3d314..
ownership of
a23f8..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFNt..
/
25a16..
ownership of
d1161..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMN8Z..
/
5fd10..
ownership of
f1520..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMd6w..
/
5c42b..
ownership of
1a37c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJ3A..
/
6fef0..
ownership of
5277e..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRYW..
/
7bd8e..
ownership of
e26ff..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
PUgvb..
/
53b70..
doc published by
PrGxv..
Param
ordinal
ordinal
:
ι
→
ο
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
SNoS_
SNoS_
:
ι
→
ι
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
SNo
SNo
:
ι
→
ο
Param
SNoLt
SNoLt
:
ι
→
ι
→
ο
Definition
SNoCutP
SNoCutP
:=
λ x0 x1 .
and
(
and
(
∀ x2 .
x2
∈
x0
⟶
SNo
x2
)
(
∀ x2 .
x2
∈
x1
⟶
SNo
x2
)
)
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
⟶
SNoLt
x2
x3
)
Param
SNoLev
SNoLev
:
ι
→
ι
Param
SNoCut
SNoCut
:
ι
→
ι
→
ι
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
famunion
famunion
:
ι
→
(
ι
→
ι
) →
ι
Param
SNoEq_
SNoEq_
:
ι
→
ι
→
ι
→
ο
Known
SNoCutP_SNoCut_impred
SNoCutP_SNoCut_impred
:
∀ x0 x1 .
SNoCutP
x0
x1
⟶
∀ x2 : ο .
(
SNo
(
SNoCut
x0
x1
)
⟶
SNoLev
(
SNoCut
x0
x1
)
∈
ordsucc
(
binunion
(
famunion
x0
(
λ x3 .
ordsucc
(
SNoLev
x3
)
)
)
(
famunion
x1
(
λ x3 .
ordsucc
(
SNoLev
x3
)
)
)
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
SNoLt
x3
(
SNoCut
x0
x1
)
)
⟶
(
∀ x3 .
x3
∈
x1
⟶
SNoLt
(
SNoCut
x0
x1
)
x3
)
⟶
(
∀ x3 .
SNo
x3
⟶
(
∀ x4 .
x4
∈
x0
⟶
SNoLt
x4
x3
)
⟶
(
∀ x4 .
x4
∈
x1
⟶
SNoLt
x3
x4
)
⟶
and
(
SNoLev
(
SNoCut
x0
x1
)
⊆
SNoLev
x3
)
(
SNoEq_
(
SNoLev
(
SNoCut
x0
x1
)
)
(
SNoCut
x0
x1
)
x3
)
)
⟶
x2
)
⟶
x2
Known
ordinal_ordsucc_In_Subq
ordinal_ordsucc_In_Subq
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordsucc
x1
⊆
x0
Known
ordinal_ordsucc
ordinal_ordsucc
:
∀ x0 .
ordinal
x0
⟶
ordinal
(
ordsucc
x0
)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
ordinal_In_Or_Subq
ordinal_In_Or_Subq
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
x0
∈
x1
)
(
x1
⊆
x0
)
Known
ordinal_binunion
ordinal_binunion
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
(
binunion
x0
x1
)
Known
ordinal_famunion
ordinal_famunion
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
ordinal
(
x1
x2
)
)
⟶
ordinal
(
famunion
x0
x1
)
Param
SNo_
SNo_
:
ι
→
ι
→
ο
Known
SNoS_E2
SNoS_E2
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
SNoS_
x0
⟶
∀ x2 : ο .
(
SNoLev
x1
∈
x0
⟶
ordinal
(
SNoLev
x1
)
⟶
SNo
x1
⟶
SNo_
(
SNoLev
x1
)
x1
⟶
x2
)
⟶
x2
Definition
False
False
:=
∀ x0 : ο .
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
ordsuccI2
ordsuccI2
:
∀ x0 .
x0
∈
ordsucc
x0
Known
famunionE_impred
famunionE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
famunion
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
∈
x1
x4
⟶
x3
)
⟶
x3
Known
In_no2cycle
In_no2cycle
:
∀ x0 x1 .
x0
∈
x1
⟶
x1
∈
x0
⟶
False
Theorem
SNoCutP_SNoCut_lim
SNoCutP_SNoCut_lim
:
∀ x0 .
ordinal
x0
⟶
(
∀ x1 .
x1
∈
x0
⟶
ordsucc
x1
∈
x0
)
⟶
∀ x1 .
x1
⊆
SNoS_
x0
⟶
∀ x2 .
x2
⊆
SNoS_
x0
⟶
SNoCutP
x1
x2
⟶
SNoLev
(
SNoCut
x1
x2
)
∈
ordsucc
x0
(proof)
Param
omega
omega
:
ι
Known
omega_ordinal
omega_ordinal
:
ordinal
omega
Known
omega_ordsucc
omega_ordsucc
:
∀ x0 .
x0
∈
omega
⟶
ordsucc
x0
∈
omega
Theorem
SNoCutP_SNoCut_omega
SNoCutP_SNoCut_omega
:
∀ x0 .
x0
⊆
SNoS_
omega
⟶
∀ x1 .
x1
⊆
SNoS_
omega
⟶
SNoCutP
x0
x1
⟶
SNoLev
(
SNoCut
x0
x1
)
∈
ordsucc
omega
(proof)
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Param
eps_
eps_
:
ι
→
ι
Known
add_SNo_0R
add_SNo_0R
:
∀ x0 .
SNo
x0
⟶
add_SNo
x0
0
=
x0
Known
add_SNo_Lt2
add_SNo_Lt2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x1
x2
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
x0
x2
)
Known
SNo_0
SNo_0
:
SNo
0
Known
SNo_eps_
SNo_eps_
:
∀ x0 .
x0
∈
omega
⟶
SNo
(
eps_
x0
)
Known
SNo_eps_pos
SNo_eps_pos
:
∀ x0 .
x0
∈
omega
⟶
SNoLt
0
(
eps_
x0
)
Theorem
add_SNo_eps_Lt
add_SNo_eps_Lt
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
omega
⟶
SNoLt
x0
(
add_SNo
x0
(
eps_
x1
)
)
(proof)
Known
SNoLt_tra
SNoLt_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x1
⟶
SNoLt
x1
x2
⟶
SNoLt
x0
x2
Known
SNo_add_SNo
SNo_add_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
Theorem
add_SNo_eps_Lt'
add_SNo_eps_Lt
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
∀ x2 .
x2
∈
omega
⟶
SNoLt
x0
x1
⟶
SNoLt
x0
(
add_SNo
x1
(
eps_
x2
)
)
(proof)
Param
minus_SNo
minus_SNo
:
ι
→
ι
Known
add_SNo_minus_Lt2b
add_SNo_minus_Lt2b
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
(
add_SNo
x2
x1
)
x0
⟶
SNoLt
x2
(
add_SNo
x0
(
minus_SNo
x1
)
)
Known
add_SNo_0L
add_SNo_0L
:
∀ x0 .
SNo
x0
⟶
add_SNo
0
x0
=
x0
Theorem
SNoLt_minus_pos
SNoLt_minus_pos
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
x0
x1
⟶
SNoLt
0
(
add_SNo
x1
(
minus_SNo
x0
)
)
(proof)
Known
ordsucc_omega_ordinal
ordsucc_omega_ordinal
:
ordinal
(
ordsucc
omega
)
Param
binintersect
binintersect
:
ι
→
ι
→
ι
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
SNoLtE
SNoLtE
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
x0
x1
⟶
∀ x2 : ο .
(
∀ x3 .
SNo
x3
⟶
SNoLev
x3
∈
binintersect
(
SNoLev
x0
)
(
SNoLev
x1
)
⟶
SNoEq_
(
SNoLev
x3
)
x3
x0
⟶
SNoEq_
(
SNoLev
x3
)
x3
x1
⟶
SNoLt
x0
x3
⟶
SNoLt
x3
x1
⟶
nIn
(
SNoLev
x3
)
x0
⟶
SNoLev
x3
∈
x1
⟶
x2
)
⟶
(
SNoLev
x0
∈
SNoLev
x1
⟶
SNoEq_
(
SNoLev
x0
)
x0
x1
⟶
SNoLev
x0
∈
x1
⟶
x2
)
⟶
(
SNoLev
x1
∈
SNoLev
x0
⟶
SNoEq_
(
SNoLev
x1
)
x0
x1
⟶
nIn
(
SNoLev
x1
)
x0
⟶
x2
)
⟶
x2
Known
SNo_omega
SNo_omega
:
SNo
omega
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Param
SNoLe
SNoLe
:
ι
→
ι
→
ο
Known
SNoLtLe_tra
SNoLtLe_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x1
⟶
SNoLe
x1
x2
⟶
SNoLt
x0
x2
Known
ordinal_SNo
ordinal_SNo
:
∀ x0 .
ordinal
x0
⟶
SNo
x0
Known
SNoLev_ordinal
SNoLev_ordinal
:
∀ x0 .
SNo
x0
⟶
ordinal
(
SNoLev
x0
)
Known
ordinal_SNoLev_max_2
ordinal_SNoLev_max_2
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
SNo
x1
⟶
SNoLev
x1
∈
ordsucc
x0
⟶
SNoLe
x1
x0
Known
ordinal_SNoLev_max
ordinal_SNoLev_max
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
SNo
x1
⟶
SNoLev
x1
∈
x0
⟶
SNoLt
x1
x0
Known
ordinal_SNoLev
ordinal_SNoLev
:
∀ x0 .
ordinal
x0
⟶
SNoLev
x0
=
x0
Known
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Theorem
SNoS_ordsucc_omega_bdd_above
SNoS_ordsucc_omega_bdd_above
:
∀ x0 .
x0
∈
SNoS_
(
ordsucc
omega
)
⟶
SNoLt
x0
omega
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
omega
)
(
SNoLt
x0
x2
)
⟶
x1
)
⟶
x1
(proof)
Known
minus_SNo_SNoS_
minus_SNo_SNoS_
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
SNoS_
x0
⟶
minus_SNo
x1
∈
SNoS_
x0
Known
minus_SNo_Lt_contra1
minus_SNo_Lt_contra1
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
(
minus_SNo
x0
)
x1
⟶
SNoLt
(
minus_SNo
x1
)
x0
Known
omega_SNo
omega_SNo
:
∀ x0 .
x0
∈
omega
⟶
SNo
x0
Theorem
SNoS_ordsucc_omega_bdd_below
SNoS_ordsucc_omega_bdd_below
:
∀ x0 .
x0
∈
SNoS_
(
ordsucc
omega
)
⟶
SNoLt
(
minus_SNo
omega
)
x0
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
omega
)
(
SNoLt
(
minus_SNo
x2
)
x0
)
⟶
x1
)
⟶
x1
(proof)
Known
add_SNo_SNoS_omega
add_SNo_SNoS_omega
:
∀ x0 .
x0
∈
SNoS_
omega
⟶
∀ x1 .
x1
∈
SNoS_
omega
⟶
add_SNo
x0
x1
∈
SNoS_
omega
Known
minus_SNo_SNoS_omega
minus_SNo_SNoS_omega
:
∀ x0 .
x0
∈
SNoS_
omega
⟶
minus_SNo
x0
∈
SNoS_
omega
Known
SNo_eps_SNoS_omega
SNo_eps_SNoS_omega
:
∀ x0 .
x0
∈
omega
⟶
eps_
x0
∈
SNoS_
omega
Known
add_SNo_minus_Lt1b
add_SNo_minus_Lt1b
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
(
add_SNo
x2
x1
)
⟶
SNoLt
(
add_SNo
x0
(
minus_SNo
x1
)
)
x2
Param
nat_p
nat_p
:
ι
→
ο
Known
eps_ordsucc_half_add
eps_ordsucc_half_add
:
∀ x0 .
nat_p
x0
⟶
add_SNo
(
eps_
(
ordsucc
x0
)
)
(
eps_
(
ordsucc
x0
)
)
=
eps_
x0
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Known
add_SNo_com_4_inner_mid
add_SNo_com_4_inner_mid
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
add_SNo
(
add_SNo
x0
x1
)
(
add_SNo
x2
x3
)
=
add_SNo
(
add_SNo
x0
x2
)
(
add_SNo
x1
x3
)
Known
SNo_minus_SNo
SNo_minus_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
minus_SNo
x0
)
Known
add_SNo_minus_SNo_linv
add_SNo_minus_SNo_linv
:
∀ x0 .
SNo
x0
⟶
add_SNo
(
minus_SNo
x0
)
x0
=
0
Theorem
SNoS_omega_drat_intvl
SNoS_omega_drat_intvl
:
∀ x0 .
x0
∈
SNoS_
omega
⟶
∀ x1 .
x1
∈
omega
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
SNoS_
omega
)
(
and
(
SNoLt
x3
x0
)
(
SNoLt
x0
(
add_SNo
x3
(
eps_
x1
)
)
)
)
⟶
x2
)
⟶
x2
(proof)
Known
SNoS_I
SNoS_I
:
∀ x0 .
ordinal
x0
⟶
∀ x1 x2 .
x2
∈
x0
⟶
SNo_
x2
x1
⟶
x1
∈
SNoS_
x0
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
SNoLev_
SNoLev_
:
∀ x0 .
SNo
x0
⟶
SNo_
(
SNoLev
x0
)
x0
Theorem
omega_SNoS_omega
omega_SNoS_omega
:
omega
⊆
SNoS_
omega
(proof)
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Known
add_nat_add_SNo
add_nat_add_SNo
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
add_nat
x0
x1
=
add_SNo
x0
x1
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
nat_1
nat_1
:
nat_p
1
Known
add_nat_SR
add_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
(
ordsucc
x1
)
=
ordsucc
(
add_nat
x0
x1
)
Known
nat_0
nat_0
:
nat_p
0
Known
add_nat_0R
add_nat_0R
:
∀ x0 .
add_nat
x0
0
=
x0
Theorem
add_SNo_1_ordsucc
add_SNo_1_ordsucc
:
∀ x0 .
x0
∈
omega
⟶
add_SNo
x0
1
=
ordsucc
x0
(proof)
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Known
nat_ind
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
eps_0_1
eps_0_1
:
eps_
0
=
1
Known
SNoLt_trichotomy_or_impred
SNoLt_trichotomy_or_impred
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
∀ x2 : ο .
(
SNoLt
x0
x1
⟶
x2
)
⟶
(
x0
=
x1
⟶
x2
)
⟶
(
SNoLt
x1
x0
⟶
x2
)
⟶
x2
Known
minus_SNo_Lt_contra
minus_SNo_Lt_contra
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
x0
x1
⟶
SNoLt
(
minus_SNo
x1
)
(
minus_SNo
x0
)
Known
minus_SNo_0
minus_SNo_0
:
minus_SNo
0
=
0
Known
SNoLt_irref
SNoLt_irref
:
∀ x0 .
not
(
SNoLt
x0
x0
)
Known
minus_add_SNo_distr
minus_add_SNo_distr
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
minus_SNo
(
add_SNo
x0
x1
)
=
add_SNo
(
minus_SNo
x0
)
(
minus_SNo
x1
)
Known
SNo_1
SNo_1
:
SNo
1
Known
add_SNo_minus_R2'
add_SNo_minus_R2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
(
add_SNo
x0
(
minus_SNo
x1
)
)
x1
=
x0
Known
nat_p_SNo
nat_p_SNo
:
∀ x0 .
nat_p
x0
⟶
SNo
x0
Known
add_SNo_assoc
add_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
(
add_SNo
x0
x1
)
x2
Theorem
SNoS_ordsucc_omega_bdd_drat_intvl
SNoS_ordsucc_omega_bdd_drat_intvl
:
∀ x0 .
x0
∈
SNoS_
(
ordsucc
omega
)
⟶
SNoLt
(
minus_SNo
omega
)
x0
⟶
SNoLt
x0
omega
⟶
∀ x1 .
x1
∈
omega
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
SNoS_
omega
)
(
and
(
SNoLt
x3
x0
)
(
SNoLt
x0
(
add_SNo
x3
(
eps_
x1
)
)
)
)
⟶
x2
)
⟶
x2
(proof)
Param
abs_SNo
abs_SNo
:
ι
→
ι
Param
Pi
Pi
:
ι
→
(
ι
→
ι
) →
ι
Definition
setexp
setexp
:=
λ x0 x1 .
Pi
x1
(
λ x2 .
x0
)
Param
ap
ap
:
ι
→
ι
→
ι
Param
nat_primrec
nat_primrec
:
ι
→
(
ι
→
ι
→
ι
) →
ι
→
ι
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Known
lam_Pi
lam_Pi
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
x3
)
⟶
lam
x0
x2
∈
Pi
x0
x1
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
beta
beta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
ap
(
lam
x0
x1
)
x2
=
x1
x2
Known
nat_p_trans
nat_p_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
nat_p
x1
Known
nat_primrec_0
nat_primrec_0
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
nat_primrec
x0
x1
0
=
x0
Known
Eps_i_ex
Eps_i_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
x0
(
prim0
x0
)
Known
and4I
and4I
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
and
(
and
(
and
x0
x1
)
x2
)
x3
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Known
nat_primrec_S
nat_primrec_S
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
nat_p
x2
⟶
nat_primrec
x0
x1
(
ordsucc
x2
)
=
x1
x2
(
nat_primrec
x0
x1
x2
)
Known
nat_ordsucc
nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
ordsucc
x0
)
Known
SNoLtLe_or
SNoLtLe_or
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
or
(
SNoLt
x0
x1
)
(
SNoLe
x1
x0
)
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
SNo_eps_decr
SNo_eps_decr
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
x0
⟶
SNoLt
(
eps_
x0
)
(
eps_
x1
)
Known
add_SNo_minus_SNo_prop2
add_SNo_minus_SNo_prop2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
(
add_SNo
(
minus_SNo
x0
)
x1
)
=
x1
Known
add_SNo_com
add_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
x1
=
add_SNo
x1
x0
Known
add_SNo_Le2
add_SNo_Le2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x1
x2
⟶
SNoLe
(
add_SNo
x0
x1
)
(
add_SNo
x0
x2
)
Known
add_SNo_com_3b_1_2
add_SNo_com_3b_1_2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
(
add_SNo
x0
x1
)
x2
=
add_SNo
(
add_SNo
x0
x2
)
x1
Known
add_SNo_Le1
add_SNo_Le1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x2
⟶
SNoLe
(
add_SNo
x0
x1
)
(
add_SNo
x2
x1
)
Known
abs_SNo_dist_swap
abs_SNo_dist_swap
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
abs_SNo
(
add_SNo
x0
(
minus_SNo
x1
)
)
=
abs_SNo
(
add_SNo
x1
(
minus_SNo
x0
)
)
Known
pos_abs_SNo
pos_abs_SNo
:
∀ x0 .
SNoLt
0
x0
⟶
abs_SNo
x0
=
x0
Known
add_SNo_Lt1_cancel
add_SNo_Lt1_cancel
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
x2
x1
)
⟶
SNoLt
x0
x2
Theorem
SNo_prereal_incr_lower_approx
SNo_prereal_incr_lower_approx
:
∀ x0 .
SNo
x0
⟶
(
∀ x1 .
x1
∈
SNoS_
omega
⟶
(
∀ x2 .
x2
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x1
(
minus_SNo
x0
)
)
)
(
eps_
x2
)
)
⟶
x1
=
x0
)
⟶
(
∀ x1 .
x1
∈
omega
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
SNoS_
omega
)
(
and
(
SNoLt
x3
x0
)
(
SNoLt
x0
(
add_SNo
x3
(
eps_
x1
)
)
)
)
⟶
x2
)
⟶
x2
)
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
setexp
(
SNoS_
omega
)
omega
)
(
∀ x3 .
x3
∈
omega
⟶
and
(
and
(
SNoLt
(
ap
x2
x3
)
x0
)
(
SNoLt
x0
(
add_SNo
(
ap
x2
x3
)
(
eps_
x3
)
)
)
)
(
∀ x4 .
x4
∈
x3
⟶
SNoLt
(
ap
x2
x4
)
(
ap
x2
x3
)
)
)
⟶
x1
)
⟶
x1
(proof)
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Definition
real
real
:=
{x0 ∈
SNoS_
(
ordsucc
omega
)
|
and
(
and
(
x0
=
omega
⟶
∀ x1 : ο .
x1
)
(
x0
=
minus_SNo
omega
⟶
∀ x1 : ο .
x1
)
)
(
∀ x1 .
x1
∈
SNoS_
omega
⟶
(
∀ x2 .
x2
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x1
(
minus_SNo
x0
)
)
)
(
eps_
x2
)
)
⟶
x1
=
x0
)
}
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Theorem
real_I
real_I
:
∀ x0 .
x0
∈
SNoS_
(
ordsucc
omega
)
⟶
(
x0
=
omega
⟶
∀ x1 : ο .
x1
)
⟶
(
x0
=
minus_SNo
omega
⟶
∀ x1 : ο .
x1
)
⟶
(
∀ x1 .
x1
∈
SNoS_
omega
⟶
(
∀ x2 .
x2
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x1
(
minus_SNo
x0
)
)
)
(
eps_
x2
)
)
⟶
x1
=
x0
)
⟶
x0
∈
real
(proof)
Known
SepE
SepE
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
and
(
x2
∈
x0
)
(
x1
x2
)
Known
SNoLeE
SNoLeE
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLe
x0
x1
⟶
or
(
SNoLt
x0
x1
)
(
x0
=
x1
)
Known
mordinal_SNoLev_min_2
mordinal_SNoLev_min_2
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
SNo
x1
⟶
SNoLev
x1
∈
ordsucc
x0
⟶
SNoLe
(
minus_SNo
x0
)
x1
Theorem
real_E
real_E
:
∀ x0 .
x0
∈
real
⟶
∀ x1 : ο .
(
SNo
x0
⟶
SNoLev
x0
∈
ordsucc
omega
⟶
x0
∈
SNoS_
(
ordsucc
omega
)
⟶
SNoLt
(
minus_SNo
omega
)
x0
⟶
SNoLt
x0
omega
⟶
(
∀ x2 .
x2
∈
SNoS_
omega
⟶
(
∀ x3 .
x3
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x2
(
minus_SNo
x0
)
)
)
(
eps_
x3
)
)
⟶
x2
=
x0
)
⟶
(
∀ x2 .
x2
∈
omega
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
SNoS_
omega
)
(
and
(
SNoLt
x4
x0
)
(
SNoLt
x0
(
add_SNo
x4
(
eps_
x2
)
)
)
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
(proof)
Theorem
real_SNo
real_SNo
:
∀ x0 .
x0
∈
real
⟶
SNo
x0
(proof)
Theorem
real_SNoS_omega_prop
real_SNoS_omega_prop
:
∀ x0 .
x0
∈
real
⟶
∀ x1 .
x1
∈
SNoS_
omega
⟶
(
∀ x2 .
x2
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x1
(
minus_SNo
x0
)
)
)
(
eps_
x2
)
)
⟶
x1
=
x0
(proof)
Known
SNoS_Subq
SNoS_Subq
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
x0
⊆
x1
⟶
SNoS_
x0
⊆
SNoS_
x1
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Known
minus_SNo_Lev
minus_SNo_Lev
:
∀ x0 .
SNo
x0
⟶
SNoLev
(
minus_SNo
x0
)
=
SNoLev
x0
Known
SNo_pos_eps_Lt
SNo_pos_eps_Lt
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
SNoS_
(
ordsucc
x0
)
⟶
SNoLt
0
x1
⟶
SNoLt
(
eps_
x0
)
x1
Theorem
SNoS_omega_real
SNoS_omega_real
:
SNoS_
omega
⊆
real
(proof)
Definition
TransSet
TransSet
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Known
omega_TransSet
omega_TransSet
:
TransSet
omega
Theorem
SNoLev_In_real_SNoS_omega
SNoLev_In_real_SNoS_omega
:
∀ x0 .
x0
∈
real
⟶
∀ x1 .
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
x1
∈
SNoS_
omega
(proof)
Known
minus_SNo_invol
minus_SNo_invol
:
∀ x0 .
SNo
x0
⟶
minus_SNo
(
minus_SNo
x0
)
=
x0
Theorem
minus_SNo_prereal_1
minus_SNo_prereal_1
:
∀ x0 .
SNo
x0
⟶
(
∀ x1 .
x1
∈
SNoS_
omega
⟶
(
∀ x2 .
x2
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x1
(
minus_SNo
x0
)
)
)
(
eps_
x2
)
)
⟶
x1
=
x0
)
⟶
∀ x1 .
x1
∈
SNoS_
omega
⟶
(
∀ x2 .
x2
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x1
(
minus_SNo
(
minus_SNo
x0
)
)
)
)
(
eps_
x2
)
)
⟶
x1
=
minus_SNo
x0
(proof)
Theorem
minus_SNo_prereal_2
minus_SNo_prereal_2
:
∀ x0 .
SNo
x0
⟶
(
∀ x1 .
x1
∈
omega
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
SNoS_
omega
)
(
and
(
SNoLt
x3
x0
)
(
SNoLt
x0
(
add_SNo
x3
(
eps_
x1
)
)
)
)
⟶
x2
)
⟶
x2
)
⟶
∀ x1 .
x1
∈
omega
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
SNoS_
omega
)
(
and
(
SNoLt
x3
(
minus_SNo
x0
)
)
(
SNoLt
(
minus_SNo
x0
)
(
add_SNo
x3
(
eps_
x1
)
)
)
)
⟶
x2
)
⟶
x2
(proof)
Known
ap_Pi
ap_Pi
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
Pi
x0
x1
⟶
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
Known
minus_SNo_Lt_contra2
minus_SNo_Lt_contra2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
x0
(
minus_SNo
x1
)
⟶
SNoLt
x1
(
minus_SNo
x0
)
Theorem
SNo_prereal_decr_upper_approx
SNo_prereal_decr_upper_approx
:
∀ x0 .
SNo
x0
⟶
(
∀ x1 .
x1
∈
SNoS_
omega
⟶
(
∀ x2 .
x2
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x1
(
minus_SNo
x0
)
)
)
(
eps_
x2
)
)
⟶
x1
=
x0
)
⟶
(
∀ x1 .
x1
∈
omega
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
SNoS_
omega
)
(
and
(
SNoLt
x3
x0
)
(
SNoLt
x0
(
add_SNo
x3
(
eps_
x1
)
)
)
)
⟶
x2
)
⟶
x2
)
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
setexp
(
SNoS_
omega
)
omega
)
(
∀ x3 .
x3
∈
omega
⟶
and
(
and
(
SNoLt
(
add_SNo
(
ap
x2
x3
)
(
minus_SNo
(
eps_
x3
)
)
)
x0
)
(
SNoLt
x0
(
ap
x2
x3
)
)
)
(
∀ x4 .
x4
∈
x3
⟶
SNoLt
(
ap
x2
x3
)
(
ap
x2
x4
)
)
)
⟶
x1
)
⟶
x1
(proof)
Theorem
27f6a..
:
∀ x0 .
x0
∈
real
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
setexp
(
SNoS_
omega
)
omega
⟶
(
∀ x3 .
x3
∈
omega
⟶
SNoLt
(
ap
x2
x3
)
x0
)
⟶
(
∀ x3 .
x3
∈
omega
⟶
SNoLt
x0
(
add_SNo
(
ap
x2
x3
)
(
eps_
x3
)
)
)
⟶
(
∀ x3 .
x3
∈
omega
⟶
∀ x4 .
x4
∈
x3
⟶
SNoLt
(
ap
x2
x4
)
(
ap
x2
x3
)
)
⟶
x1
)
⟶
x1
(proof)
Theorem
355d3..
:
∀ x0 .
x0
∈
real
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
setexp
(
SNoS_
omega
)
omega
⟶
(
∀ x3 .
x3
∈
omega
⟶
SNoLt
(
add_SNo
(
ap
x2
x3
)
(
minus_SNo
(
eps_
x3
)
)
)
x0
)
⟶
(
∀ x3 .
x3
∈
omega
⟶
SNoLt
x0
(
ap
x2
x3
)
)
⟶
(
∀ x3 .
x3
∈
omega
⟶
∀ x4 .
x4
∈
x3
⟶
SNoLt
(
ap
x2
x3
)
(
ap
x2
x4
)
)
⟶
x1
)
⟶
x1
(proof)