Search for blocks/addresses/...

Proofgold Address

address
PUKaiDXLEAMapiYFbUKpuRBiRfdKBDZ8jWu
total
0
mg
-
conjpub
-
current assets
71e37../d6bf0.. bday: 27959 doc published by Pr4zB..
Param binunionbinunion : ιιι
Param nInnIn : ιιο
Param nat_pnat_p : ιο
Param equipequip : ιιο
Param add_natadd_nat : ιιι
Param atleastpatleastp : ιιο
Known 2c48a..atleastp_antisym_equip : ∀ x0 x1 . atleastp x0 x1atleastp x1 x0equip x0 x1
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Param ordsuccordsucc : ιι
Known 48e0f.. : ∀ x0 . nat_p x0∀ x1 . or (atleastp x1 x0) (atleastp (ordsucc x0) x1)
Definition FalseFalse := ∀ x0 : ο . x0
Known FalseEFalseE : False∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Known 4fb58..Pigeonhole_not_atleastp_ordsucc : ∀ x0 . nat_p x0not (atleastp (ordsucc x0) x0)
Known add_nat_padd_nat_p : ∀ x0 . nat_p x0∀ x1 . nat_p x1nat_p (add_nat x0 x1)
Known atleastp_traatleastp_tra : ∀ x0 x1 x2 . atleastp x0 x1atleastp x1 x2atleastp x0 x2
Param setsumsetsum : ιιι
Known add_nat_SRadd_nat_SR : ∀ x0 x1 . nat_p x1add_nat x0 (ordsucc x1) = ordsucc (add_nat x0 x1)
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Known c88e0.. : ∀ x0 x1 x2 x3 . nat_p x0nat_p x1equip x0 x2equip x1 x3equip (add_nat x0 x1) (setsum x2 x3)
Known nat_ordsuccnat_ordsucc : ∀ x0 . nat_p x0nat_p (ordsucc x0)
Known equip_refequip_ref : ∀ x0 . equip x0 x0
Known 1fe14.. : ∀ x0 x1 x2 x3 . atleastp x0 x2atleastp x1 x3(∀ x4 . x4x2nIn x4 x3)atleastp (setsum x0 x1) (binunion x2 x3)
Known equip_symequip_sym : ∀ x0 x1 . equip x0 x1equip x1 x0
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Known nat_invnat_inv : ∀ x0 . nat_p x0or (x0 = 0) (∀ x1 : ο . (∀ x2 . and (nat_p x2) (x0 = ordsucc x2)x1)x1)
Known 71267.. : ∀ x0 . atleastp 0 x0
Known c558f.. : ∀ x0 x1 x2 x3 . atleastp x0 x2atleastp x1 x3atleastp (binunion x0 x1) (setsum x2 x3)
Theorem 8bf56.. : ∀ x0 x1 x2 x3 x4 . binunion x0 x1 = x2(∀ x5 . x5x0nIn x5 x1)nat_p x3nat_p x4equip x0 x3equip x2 (add_nat x3 x4)equip x1 x4 (proof)
Theorem 8bf56.. : ∀ x0 x1 x2 x3 x4 . binunion x0 x1 = x2(∀ x5 . x5x0nIn x5 x1)nat_p x3nat_p x4equip x0 x3equip x2 (add_nat x3 x4)equip x1 x4 (proof)

previous assets