Search for blocks/addresses/...
Proofgold Address
address
PUKrNCNnmfYANAxfEeNc9QpoJ8VEXpnh1Wn
total
0
mg
-
conjpub
-
current assets
81f0f..
/
d9e20..
bday:
2749
doc published by
PrGxv..
Definition
False
:=
∀ x0 : ο .
x0
Definition
not
:=
λ x0 : ο .
x0
⟶
False
Definition
Subq
:=
λ x0 x1 .
∀ x2 .
prim1
x2
x0
⟶
prim1
x2
x1
Definition
nSubq
:=
λ x0 x1 .
not
(
Subq
x0
x1
)
Param
4a7ef..
:
ι
Param
4ae4a..
:
ι
→
ι
Known
efbae..
:
∀ x0 .
4a7ef..
=
4ae4a..
x0
⟶
∀ x1 : ο .
x1
Theorem
c8c18..
:
4a7ef..
=
4ae4a..
4a7ef..
⟶
∀ x0 : ο .
x0
(proof)
Theorem
3bafe..
:
4a7ef..
=
4ae4a..
(
4ae4a..
4a7ef..
)
⟶
∀ x0 : ο .
x0
(proof)
Known
4b095..
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
4ae4a..
x0
=
4ae4a..
x1
⟶
∀ x2 : ο .
x2
Theorem
9ac87..
:
4ae4a..
4a7ef..
=
4ae4a..
(
4ae4a..
4a7ef..
)
⟶
∀ x0 : ο .
x0
(proof)
Definition
nIn
:=
λ x0 x1 .
not
(
prim1
x0
x1
)
Known
dcd83..
:
∀ x0 .
nIn
x0
4a7ef..
Theorem
1f5f7..
:
nIn
4a7ef..
4a7ef..
(proof)
Theorem
2abd8..
:
nIn
(
4ae4a..
4a7ef..
)
4a7ef..
(proof)
Theorem
af2d6..
:
nIn
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
4a7ef..
(proof)
Known
In_irref
:
∀ x0 .
nIn
x0
x0
Theorem
015b8..
:
nIn
(
4ae4a..
4a7ef..
)
(
4ae4a..
4a7ef..
)
(proof)
Theorem
ef947..
:
nIn
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(proof)
Known
e8942..
:
∀ x0 .
Subq
4a7ef..
x0
Theorem
67d30..
:
Subq
4a7ef..
4a7ef..
(proof)
Theorem
a90a3..
:
Subq
4a7ef..
(
4ae4a..
4a7ef..
)
(proof)
Theorem
f6c3d..
:
Subq
4a7ef..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(proof)
Known
f1083..
:
prim1
4a7ef..
(
4ae4a..
4a7ef..
)
Theorem
7a6f2..
:
nSubq
(
4ae4a..
4a7ef..
)
4a7ef..
(proof)
Known
Subq_ref
:
∀ x0 .
Subq
x0
x0
Theorem
25bc5..
:
Subq
(
4ae4a..
4a7ef..
)
(
4ae4a..
4a7ef..
)
(proof)
Known
c79db..
:
∀ x0 .
Subq
x0
(
4ae4a..
x0
)
Theorem
cfb62..
:
Subq
(
4ae4a..
4a7ef..
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(proof)
Known
f336d..
:
prim1
4a7ef..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
Theorem
378c0..
:
nSubq
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
4a7ef..
(proof)
Known
0b783..
:
prim1
(
4ae4a..
4a7ef..
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
Theorem
09622..
:
nSubq
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
4ae4a..
4a7ef..
)
(proof)
Theorem
8de7c..
:
Subq
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(proof)
Param
ba9d8..
:
ι
→
ο
Known
839f4..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
ba9d8..
x1
⟶
(
∀ x2 .
prim1
x2
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
ba9d8..
x1
⟶
x0
x1
Known
set_ext
:
∀ x0 x1 .
Subq
x0
x1
⟶
Subq
x1
x0
⟶
x0
=
x1
Known
UnionE_impred
:
∀ x0 x1 .
prim1
x1
(
prim3
x0
)
⟶
∀ x2 : ο .
(
∀ x3 .
prim1
x1
x3
⟶
prim1
x3
x0
⟶
x2
)
⟶
x2
Known
82e3b..
:
∀ x0 .
ba9d8..
x0
⟶
∀ x1 .
prim1
x1
(
4ae4a..
x0
)
⟶
Subq
x1
x0
Known
UnionI
:
∀ x0 x1 x2 .
prim1
x1
x2
⟶
prim1
x2
x0
⟶
prim1
x1
(
prim3
x0
)
Known
5faa3..
:
∀ x0 .
prim1
x0
(
4ae4a..
x0
)
Theorem
05ab8..
:
∀ x0 .
ba9d8..
x0
⟶
prim3
(
4ae4a..
x0
)
=
x0
(proof)
Theorem
72f77..
:
prim1
4a7ef..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Theorem
c60fe..
:
prim1
(
4ae4a..
4a7ef..
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Theorem
2eaee..
:
prim1
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Theorem
77d87..
:
prim1
4a7ef..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Theorem
42824..
:
prim1
(
4ae4a..
4a7ef..
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Theorem
68d02..
:
prim1
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Theorem
778cc..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Theorem
03651..
:
prim1
4a7ef..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(proof)
Theorem
ff451..
:
prim1
(
4ae4a..
4a7ef..
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(proof)
Theorem
a7963..
:
prim1
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(proof)
Theorem
9044c..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(proof)
Theorem
3b34e..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(proof)
Theorem
652a2..
:
prim1
4a7ef..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
(proof)
Theorem
71fcb..
:
prim1
(
4ae4a..
4a7ef..
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
(proof)
Theorem
7f899..
:
prim1
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
(proof)
Theorem
d88ba..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
(proof)
Theorem
15e7b..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
(proof)
Theorem
98e34..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
(proof)
Theorem
b9890..
:
prim1
4a7ef..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
(proof)
Theorem
102c8..
:
prim1
(
4ae4a..
4a7ef..
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
(proof)
Theorem
28cca..
:
prim1
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
(proof)
Theorem
57aad..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
(proof)
Theorem
ea5d5..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
(proof)
Theorem
1ceed..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
(proof)
Theorem
57cc6..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
(proof)
Theorem
06ef3..
:
prim1
4a7ef..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
(proof)
Theorem
71150..
:
prim1
(
4ae4a..
4a7ef..
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
(proof)
Theorem
49aa4..
:
prim1
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
(proof)
Theorem
caeb5..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
(proof)
Theorem
d4e8e..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
(proof)
Theorem
69e64..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
(proof)
Theorem
4b5d5..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
(proof)
Theorem
cbdee..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
(proof)
Theorem
1cd68..
:
prim1
4a7ef..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
)
(proof)
Theorem
4e80f..
:
prim1
(
4ae4a..
4a7ef..
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
)
(proof)
Theorem
384d5..
:
prim1
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
)
(proof)
Theorem
c8b62..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
)
(proof)
Theorem
1ebb9..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
)
(proof)
Theorem
9bb00..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
)
(proof)
Theorem
0d93c..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
)
(proof)
Theorem
65954..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
)
(proof)
Theorem
a1e1a..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
)
(proof)
Param
In_rec_i
:
(
ι
→
(
ι
→
ι
) →
ι
) →
ι
→
ι
Param
If_i
:
ο
→
ι
→
ι
→
ι
Definition
nat_primrec
:=
λ x0 .
λ x1 :
ι →
ι → ι
.
In_rec_i
(
λ x2 .
λ x3 :
ι → ι
.
If_i
(
prim1
(
prim3
x2
)
x2
)
(
x1
(
prim3
x2
)
(
x3
(
prim3
x2
)
)
)
x0
)
Definition
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Theorem
nat_primrec_r
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
∀ x3 x4 :
ι → ι
.
(
∀ x5 .
prim1
x5
x2
⟶
x3
x5
=
x4
x5
)
⟶
If_i
(
prim1
(
prim3
x2
)
x2
)
(
x1
(
prim3
x2
)
(
x3
(
prim3
x2
)
)
)
x0
=
If_i
(
prim1
(
prim3
x2
)
x2
)
(
x1
(
prim3
x2
)
(
x4
(
prim3
x2
)
)
)
x0
(proof)
Known
In_rec_i_eq
:
∀ x0 :
ι →
(
ι → ι
)
→ ι
.
(
∀ x1 .
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_i
x0
x1
=
x0
x1
(
In_rec_i
x0
)
Theorem
1f489..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
nat_primrec
x0
x1
4a7ef..
=
x0
(proof)
Known
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Theorem
239af..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
ba9d8..
x2
⟶
nat_primrec
x0
x1
(
4ae4a..
x2
)
=
x1
x2
(
nat_primrec
x0
x1
x2
)
(proof)
Definition
616bf..
:=
λ x0 .
nat_primrec
x0
(
λ x1 .
4ae4a..
)
Theorem
f30c5..
:
∀ x0 .
616bf..
x0
4a7ef..
=
x0
(proof)
Theorem
1c625..
:
∀ x0 x1 .
ba9d8..
x1
⟶
616bf..
x0
(
4ae4a..
x1
)
=
4ae4a..
(
616bf..
x0
x1
)
(proof)
Known
5c211..
:
∀ x0 :
ι → ο
.
x0
4a7ef..
⟶
(
∀ x1 .
ba9d8..
x1
⟶
x0
x1
⟶
x0
(
4ae4a..
x1
)
)
⟶
∀ x1 .
ba9d8..
x1
⟶
x0
x1
Known
2fbbc..
:
∀ x0 .
ba9d8..
x0
⟶
ba9d8..
(
4ae4a..
x0
)
Theorem
4183e..
:
∀ x0 .
ba9d8..
x0
⟶
∀ x1 .
ba9d8..
x1
⟶
ba9d8..
(
616bf..
x0
x1
)
(proof)
Theorem
1319f..
:
∀ x0 .
ba9d8..
x0
⟶
∀ x1 .
ba9d8..
x1
⟶
∀ x2 .
ba9d8..
x2
⟶
616bf..
(
616bf..
x0
x1
)
x2
=
616bf..
x0
(
616bf..
x1
x2
)
(proof)
Theorem
140e5..
:
∀ x0 .
ba9d8..
x0
⟶
616bf..
4a7ef..
x0
=
x0
(proof)
Theorem
5cf31..
:
∀ x0 .
ba9d8..
x0
⟶
∀ x1 .
ba9d8..
x1
⟶
616bf..
(
4ae4a..
x0
)
x1
=
4ae4a..
(
616bf..
x0
x1
)
(proof)
Theorem
1ce6b..
:
∀ x0 .
ba9d8..
x0
⟶
∀ x1 .
ba9d8..
x1
⟶
616bf..
x0
x1
=
616bf..
x1
x0
(proof)
Definition
14149..
:=
λ x0 .
nat_primrec
4a7ef..
(
λ x1 .
616bf..
x0
)
Theorem
8940b..
:
∀ x0 .
14149..
x0
4a7ef..
=
4a7ef..
(proof)
Theorem
5ddb9..
:
∀ x0 x1 .
ba9d8..
x1
⟶
14149..
x0
(
4ae4a..
x1
)
=
616bf..
x0
(
14149..
x0
x1
)
(proof)
Known
4c9b8..
:
ba9d8..
4a7ef..
Theorem
97eb5..
:
∀ x0 .
ba9d8..
x0
⟶
∀ x1 .
ba9d8..
x1
⟶
ba9d8..
(
14149..
x0
x1
)
(proof)
Theorem
7ae5f..
:
∀ x0 .
ba9d8..
x0
⟶
14149..
4a7ef..
x0
=
4a7ef..
(proof)
Theorem
7639b..
:
∀ x0 .
ba9d8..
x0
⟶
∀ x1 .
ba9d8..
x1
⟶
14149..
(
4ae4a..
x0
)
x1
=
616bf..
(
14149..
x0
x1
)
x1
(proof)
Theorem
022d0..
:
∀ x0 .
ba9d8..
x0
⟶
∀ x1 .
ba9d8..
x1
⟶
14149..
x0
x1
=
14149..
x1
x0
(proof)
Theorem
a5b99..
:
∀ x0 .
ba9d8..
x0
⟶
∀ x1 .
ba9d8..
x1
⟶
∀ x2 .
ba9d8..
x2
⟶
14149..
x0
(
616bf..
x1
x2
)
=
616bf..
(
14149..
x0
x1
)
(
14149..
x0
x2
)
(proof)
Theorem
13c0f..
:
∀ x0 .
ba9d8..
x0
⟶
∀ x1 .
ba9d8..
x1
⟶
∀ x2 .
ba9d8..
x2
⟶
14149..
(
616bf..
x0
x1
)
x2
=
616bf..
(
14149..
x0
x2
)
(
14149..
x1
x2
)
(proof)
Theorem
7ecf1..
:
∀ x0 .
ba9d8..
x0
⟶
∀ x1 .
ba9d8..
x1
⟶
∀ x2 .
ba9d8..
x2
⟶
14149..
(
14149..
x0
x1
)
x2
=
14149..
x0
(
14149..
x1
x2
)
(proof)
Theorem
1c51c..
:
616bf..
(
4ae4a..
4a7ef..
)
(
4ae4a..
4a7ef..
)
=
4ae4a..
(
4ae4a..
4a7ef..
)
(proof)
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
958ef..
:
∀ x0 x1 .
prim1
x1
(
4ae4a..
x0
)
⟶
or
(
prim1
x1
x0
)
(
x1
=
x0
)
Known
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
3238a..
:
∀ x0 .
ba9d8..
x0
⟶
∀ x1 .
prim1
x1
x0
⟶
prim1
(
4ae4a..
x1
)
(
4ae4a..
x0
)
Known
054cd..
:
∀ x0 x1 .
4ae4a..
x0
=
4ae4a..
x1
⟶
x0
=
x1
Known
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
893d8..
:
∀ x0 .
ba9d8..
x0
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
prim1
x2
(
4ae4a..
x0
)
⟶
prim1
(
x1
x2
)
x0
)
⟶
not
(
∀ x2 .
prim1
x2
(
4ae4a..
x0
)
⟶
∀ x3 .
prim1
x3
(
4ae4a..
x0
)
⟶
x1
x2
=
x1
x3
⟶
x2
=
x3
)
(proof)
Definition
bij
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
and
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
x1
)
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
)
(
∀ x3 .
prim1
x3
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
prim1
x5
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
Known
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Theorem
aa4b6..
:
∀ x0 .
ba9d8..
x0
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
prim1
(
x1
x2
)
x0
)
⟶
(
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
x1
x2
=
x1
x3
⟶
x2
=
x3
)
⟶
bij
x0
x0
x1
(proof)
previous assets