Search for blocks/addresses/...
Proofgold Address
address
PULLaCwWETZTcwFXDqzYpPpMYFvfA8Eivey
total
0
mg
-
conjpub
-
current assets
dfbe1..
/
a1208..
bday:
2130
doc published by
PrGxv..
Param
236c6..
:
ι
Definition
07017..
:=
λ x0 .
x0
=
236c6..
Definition
0b8ef..
:=
prim0
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
Definition
6c5f4..
:=
prim0
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
Known
93754..
:
∀ x0 x1 x2 x3 .
prim0
x0
x1
=
prim0
x2
x3
⟶
x1
=
x3
Theorem
3a245..
:
∀ x0 x1 .
0b8ef..
x0
=
0b8ef..
x1
⟶
x0
=
x1
(proof)
Theorem
cc192..
:
∀ x0 x1 .
6c5f4..
x0
=
6c5f4..
x1
⟶
x0
=
x1
(proof)
Known
50787..
:
∀ x0 x1 x2 x3 .
prim0
x0
x1
=
prim0
x2
x3
⟶
x0
=
x2
Definition
False
:=
∀ x0 : ο .
x0
Known
0286c..
:
∀ x0 x1 .
prim0
x0
x1
=
236c6..
⟶
False
Known
db6fe..
:
∀ x0 x1 :
ι → ι
.
∀ x2 .
prim1
x0
=
prim1
x1
⟶
x0
x2
=
x1
x2
Theorem
88d35..
:
∀ x0 x1 .
0b8ef..
x0
=
6c5f4..
x1
⟶
∀ x2 : ο .
x2
(proof)
Definition
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
c0709..
:=
λ x0 x1 :
ι → ο
.
λ x2 .
or
(
∀ x3 : ο .
(
∀ x4 .
and
(
x0
x4
)
(
x2
=
0b8ef..
x4
)
⟶
x3
)
⟶
x3
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x1
x4
)
(
x2
=
6c5f4..
x4
)
⟶
x3
)
⟶
x3
)
Known
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
5c8d7..
:
∀ x0 x1 :
ι → ο
.
∀ x2 .
x0
x2
⟶
c0709..
x0
x1
(
0b8ef..
x2
)
(proof)
Known
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Theorem
f3d9f..
:
∀ x0 x1 :
ι → ο
.
∀ x2 .
x1
x2
⟶
c0709..
x0
x1
(
6c5f4..
x2
)
(proof)
Theorem
8b44a..
:
∀ x0 x1 :
ι → ο
.
∀ x2 .
c0709..
x0
x1
x2
⟶
∀ x3 :
ι → ο
.
(
∀ x4 .
x0
x4
⟶
x3
(
0b8ef..
x4
)
)
⟶
(
∀ x4 .
x1
x4
⟶
x3
(
6c5f4..
x4
)
)
⟶
x3
x2
(proof)
Definition
cfc98..
:=
λ x0 x1 .
prim0
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x3
x2
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x3
x3
)
)
)
)
)
(
prim1
(
λ x2 .
x2
)
)
)
(
prim0
x0
x1
)
Known
128d8..
:
∀ x0 x1 x2 x3 .
prim0
x0
x1
=
prim0
x2
x3
⟶
∀ x4 : ο .
(
x0
=
x2
⟶
x1
=
x3
⟶
x4
)
⟶
x4
Theorem
3a4f6..
:
∀ x0 x1 x2 x3 .
cfc98..
x0
x1
=
cfc98..
x2
x3
⟶
and
(
x0
=
x2
)
(
x1
=
x3
)
(proof)
Definition
6e020..
:=
λ x0 x1 :
ι → ο
.
λ x2 .
∀ x3 : ο .
(
∀ x4 .
(
∀ x5 : ο .
(
∀ x6 .
and
(
and
(
x0
x4
)
(
x1
x6
)
)
(
x2
=
cfc98..
x4
x6
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
Known
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Theorem
024d1..
:
∀ x0 x1 :
ι → ο
.
∀ x2 x3 .
x0
x2
⟶
x1
x3
⟶
6e020..
x0
x1
(
cfc98..
x2
x3
)
(proof)
Theorem
78238..
:
∀ x0 x1 :
ι → ο
.
∀ x2 .
6e020..
x0
x1
x2
⟶
∀ x3 :
ι → ο
.
(
∀ x4 x5 .
x0
x4
⟶
x1
x5
⟶
x3
(
cfc98..
x4
x5
)
)
⟶
x3
x2
(proof)
Param
5e331..
:
ι
Param
a3eb9..
:
ι
→
ι
→
ι
Param
bf68c..
:
ι
→
ι
→
ι
Definition
858ff..
:=
λ x0 .
λ x1 :
ι → ο
.
∀ x2 :
ι →
(
ι → ο
)
→ ο
.
x2
5e331..
07017..
⟶
(
∀ x3 x4 .
∀ x5 x6 :
ι → ο
.
x2
x3
x5
⟶
x2
x4
x6
⟶
x2
(
a3eb9..
x3
x4
)
(
c0709..
x5
x6
)
)
⟶
(
∀ x3 x4 .
∀ x5 x6 :
ι → ο
.
x2
x3
x5
⟶
x2
x4
x6
⟶
x2
(
bf68c..
x3
x4
)
(
6e020..
x5
x6
)
)
⟶
x2
x0
x1
Theorem
fb7af..
:
858ff..
5e331..
07017..
(proof)
Theorem
fc3cd..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
858ff..
x0
x2
⟶
858ff..
x1
x3
⟶
858ff..
(
a3eb9..
x0
x1
)
(
c0709..
x2
x3
)
(proof)
Theorem
57d3c..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
858ff..
x0
x2
⟶
858ff..
x1
x3
⟶
858ff..
(
bf68c..
x0
x1
)
(
6e020..
x2
x3
)
(proof)
Param
74e69..
:
ι
→
ο
Known
facf7..
:
∀ x0 :
ι → ο
.
x0
5e331..
⟶
(
∀ x1 x2 .
74e69..
x1
⟶
x0
x1
⟶
74e69..
x2
⟶
x0
x2
⟶
x0
(
a3eb9..
x1
x2
)
)
⟶
(
∀ x1 x2 .
74e69..
x1
⟶
x0
x1
⟶
74e69..
x2
⟶
x0
x2
⟶
x0
(
bf68c..
x1
x2
)
)
⟶
∀ x1 .
74e69..
x1
⟶
x0
x1
Theorem
41bc1..
:
∀ x0 .
74e69..
x0
⟶
∀ x1 : ο .
(
∀ x2 :
ι → ο
.
858ff..
x0
x2
⟶
x1
)
⟶
x1
(proof)
Theorem
1aee4..
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
x0
5e331..
07017..
⟶
(
∀ x1 x2 .
∀ x3 x4 :
ι → ο
.
858ff..
x1
x3
⟶
x0
x1
x3
⟶
858ff..
x2
x4
⟶
x0
x2
x4
⟶
x0
(
a3eb9..
x1
x2
)
(
c0709..
x3
x4
)
)
⟶
(
∀ x1 x2 .
∀ x3 x4 :
ι → ο
.
858ff..
x1
x3
⟶
x0
x1
x3
⟶
858ff..
x2
x4
⟶
x0
x2
x4
⟶
x0
(
bf68c..
x1
x2
)
(
6e020..
x3
x4
)
)
⟶
∀ x1 .
∀ x2 :
ι → ο
.
858ff..
x1
x2
⟶
x0
x1
x2
(proof)
Known
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
9ec26..
:
∀ x0 x1 .
5e331..
=
a3eb9..
x0
x1
⟶
∀ x2 : ο .
x2
Known
59f91..
:
∀ x0 x1 .
5e331..
=
bf68c..
x0
x1
⟶
∀ x2 : ο .
x2
Known
5e750..
:
∀ x0 x1 x2 x3 .
a3eb9..
x0
x1
=
a3eb9..
x2
x3
⟶
and
(
x0
=
x2
)
(
x1
=
x3
)
Known
a8e2e..
:
∀ x0 x1 x2 x3 .
a3eb9..
x0
x1
=
bf68c..
x2
x3
⟶
∀ x4 : ο .
x4
Known
2f86f..
:
∀ x0 x1 x2 x3 .
bf68c..
x0
x1
=
bf68c..
x2
x3
⟶
and
(
x0
=
x2
)
(
x1
=
x3
)
Theorem
21067..
:
∀ x0 .
∀ x1 :
ι → ο
.
858ff..
x0
x1
⟶
∀ x2 .
∀ x3 :
ι → ο
.
858ff..
x2
x3
⟶
x0
=
x2
⟶
x1
=
x3
(proof)
Theorem
e3e6f..
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
858ff..
x0
x1
⟶
858ff..
x0
x2
⟶
x1
=
x2
(proof)
Theorem
98718..
:
∀ x0 .
∀ x1 :
ι → ο
.
858ff..
x0
x1
⟶
∀ x2 : ο .
(
x0
=
5e331..
⟶
x1
=
07017..
⟶
x2
)
⟶
(
∀ x3 x4 .
∀ x5 x6 :
ι → ο
.
858ff..
x3
x5
⟶
858ff..
x4
x6
⟶
x0
=
a3eb9..
x3
x4
⟶
x1
=
c0709..
x5
x6
⟶
x2
)
⟶
(
∀ x3 x4 .
∀ x5 x6 :
ι → ο
.
858ff..
x3
x5
⟶
858ff..
x4
x6
⟶
x0
=
bf68c..
x3
x4
⟶
x1
=
6e020..
x5
x6
⟶
x2
)
⟶
x2
(proof)
Theorem
b4c82..
:
∀ x0 x1 .
∀ x2 :
ι → ο
.
858ff..
(
a3eb9..
x0
x1
)
x2
⟶
∀ x3 : ο .
(
∀ x4 :
ι → ο
.
(
∀ x5 : ο .
(
∀ x6 :
ι → ο
.
and
(
and
(
858ff..
x0
x4
)
(
858ff..
x1
x6
)
)
(
x2
=
c0709..
x4
x6
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
(proof)
Theorem
2156c..
:
∀ x0 x1 .
∀ x2 :
ι → ο
.
858ff..
(
bf68c..
x0
x1
)
x2
⟶
∀ x3 : ο .
(
∀ x4 :
ι → ο
.
(
∀ x5 : ο .
(
∀ x6 :
ι → ο
.
and
(
and
(
858ff..
x0
x4
)
(
858ff..
x1
x6
)
)
(
x2
=
6e020..
x4
x6
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
(proof)
Param
c4def..
:
ι
Param
6b90c..
:
ι
→
ι
→
ι
Param
c9248..
:
ι
Param
a6e19..
:
ι
→
ι
Param
2fe34..
:
ι
→
ι
Param
e05e6..
:
ι
→
ο
Param
3e00e..
:
ι
→
ι
→
ι
Param
f9341..
:
ι
→
ι
→
ι
Param
1fa6d..
:
ι
→
ι
Param
3a365..
:
ι
→
ι
Definition
d7d78..
:=
λ x0 x1 x2 .
∀ x3 :
ι →
ι →
ι → ο
.
(
∀ x4 .
x3
c4def..
x4
x4
)
⟶
(
∀ x4 x5 x6 x7 x8 .
x3
x4
x6
x7
⟶
x3
x5
x7
x8
⟶
x3
(
6b90c..
x4
x5
)
x6
x8
)
⟶
(
∀ x4 .
x3
c9248..
x4
236c6..
)
⟶
(
∀ x4 x5 x6 .
x3
x4
x5
x6
⟶
x3
(
a6e19..
x4
)
x5
(
0b8ef..
x6
)
)
⟶
(
∀ x4 x5 x6 .
x3
x4
x5
x6
⟶
x3
(
2fe34..
x4
)
x5
(
6c5f4..
x6
)
)
⟶
(
∀ x4 x5 x6 x7 x8 .
e05e6..
x5
⟶
x3
x4
(
cfc98..
x6
x7
)
x8
⟶
x3
(
3e00e..
x4
x5
)
(
cfc98..
(
0b8ef..
x6
)
x7
)
x8
)
⟶
(
∀ x4 x5 x6 x7 x8 .
e05e6..
x4
⟶
x3
x5
(
cfc98..
x6
x7
)
x8
⟶
x3
(
3e00e..
x4
x5
)
(
cfc98..
(
6c5f4..
x6
)
x7
)
x8
)
⟶
(
∀ x4 x5 x6 x7 x8 .
x3
x4
x6
x7
⟶
x3
x5
x6
x8
⟶
x3
(
f9341..
x4
x5
)
x6
(
cfc98..
x7
x8
)
)
⟶
(
∀ x4 x5 x6 x7 .
x3
x4
x5
x7
⟶
x3
(
1fa6d..
x4
)
(
cfc98..
x5
x6
)
x7
)
⟶
(
∀ x4 x5 x6 x7 .
x3
x4
x6
x7
⟶
x3
(
3a365..
x4
)
(
cfc98..
x5
x6
)
x7
)
⟶
x3
x0
x1
x2
Theorem
4a83c..
:
∀ x0 .
d7d78..
c4def..
x0
x0
(proof)
Theorem
3e6f8..
:
∀ x0 x1 x2 x3 x4 .
d7d78..
x0
x2
x3
⟶
d7d78..
x1
x3
x4
⟶
d7d78..
(
6b90c..
x0
x1
)
x2
x4
(proof)
Theorem
b6648..
:
∀ x0 .
d7d78..
c9248..
x0
236c6..
(proof)
Theorem
c8e20..
:
∀ x0 x1 x2 .
d7d78..
x0
x1
x2
⟶
d7d78..
(
a6e19..
x0
)
x1
(
0b8ef..
x2
)
(proof)
Theorem
ca73c..
:
∀ x0 x1 x2 .
d7d78..
x0
x1
x2
⟶
d7d78..
(
2fe34..
x0
)
x1
(
6c5f4..
x2
)
(proof)
Theorem
547ca..
:
∀ x0 x1 x2 x3 x4 .
e05e6..
x1
⟶
d7d78..
x0
(
cfc98..
x2
x3
)
x4
⟶
d7d78..
(
3e00e..
x0
x1
)
(
cfc98..
(
0b8ef..
x2
)
x3
)
x4
(proof)
Theorem
2011d..
:
∀ x0 x1 x2 x3 x4 .
e05e6..
x0
⟶
d7d78..
x1
(
cfc98..
x2
x3
)
x4
⟶
d7d78..
(
3e00e..
x0
x1
)
(
cfc98..
(
6c5f4..
x2
)
x3
)
x4
(proof)
Theorem
092f4..
:
∀ x0 x1 x2 x3 x4 .
d7d78..
x0
x2
x3
⟶
d7d78..
x1
x2
x4
⟶
d7d78..
(
f9341..
x0
x1
)
x2
(
cfc98..
x3
x4
)
(proof)
Theorem
d0180..
:
∀ x0 x1 x2 x3 .
d7d78..
x0
x1
x3
⟶
d7d78..
(
1fa6d..
x0
)
(
cfc98..
x1
x2
)
x3
(proof)
Theorem
214ce..
:
∀ x0 x1 x2 x3 .
d7d78..
x0
x2
x3
⟶
d7d78..
(
3a365..
x0
)
(
cfc98..
x1
x2
)
x3
(proof)
Theorem
4bdfc..
:
∀ x0 :
ι →
ι →
ι → ο
.
(
∀ x1 .
d7d78..
c4def..
x1
x1
⟶
x0
c4def..
x1
x1
)
⟶
(
∀ x1 x2 x3 x4 x5 .
d7d78..
x1
x3
x4
⟶
x0
x1
x3
x4
⟶
d7d78..
x2
x4
x5
⟶
x0
x2
x4
x5
⟶
x0
(
6b90c..
x1
x2
)
x3
x5
)
⟶
(
∀ x1 .
d7d78..
c9248..
x1
236c6..
⟶
x0
c9248..
x1
236c6..
)
⟶
(
∀ x1 x2 x3 .
d7d78..
x1
x2
x3
⟶
x0
x1
x2
x3
⟶
x0
(
a6e19..
x1
)
x2
(
0b8ef..
x3
)
)
⟶
(
∀ x1 x2 x3 .
d7d78..
x1
x2
x3
⟶
x0
x1
x2
x3
⟶
x0
(
2fe34..
x1
)
x2
(
6c5f4..
x3
)
)
⟶
(
∀ x1 x2 x3 x4 x5 .
e05e6..
x2
⟶
d7d78..
x1
(
cfc98..
x3
x4
)
x5
⟶
x0
x1
(
cfc98..
x3
x4
)
x5
⟶
x0
(
3e00e..
x1
x2
)
(
cfc98..
(
0b8ef..
x3
)
x4
)
x5
)
⟶
(
∀ x1 x2 x3 x4 x5 .
e05e6..
x1
⟶
d7d78..
x2
(
cfc98..
x3
x4
)
x5
⟶
x0
x2
(
cfc98..
x3
x4
)
x5
⟶
x0
(
3e00e..
x1
x2
)
(
cfc98..
(
6c5f4..
x3
)
x4
)
x5
)
⟶
(
∀ x1 x2 x3 x4 x5 .
d7d78..
x1
x3
x4
⟶
x0
x1
x3
x4
⟶
d7d78..
x2
x3
x5
⟶
x0
x2
x3
x5
⟶
x0
(
f9341..
x1
x2
)
x3
(
cfc98..
x4
x5
)
)
⟶
(
∀ x1 x2 x3 x4 .
d7d78..
x1
x2
x4
⟶
x0
x1
x2
x4
⟶
x0
(
1fa6d..
x1
)
(
cfc98..
x2
x3
)
x4
)
⟶
(
∀ x1 x2 x3 x4 .
d7d78..
x1
x3
x4
⟶
x0
x1
x3
x4
⟶
x0
(
3a365..
x1
)
(
cfc98..
x2
x3
)
x4
)
⟶
∀ x1 x2 x3 .
d7d78..
x1
x2
x3
⟶
x0
x1
x2
x3
(proof)
Theorem
16c10..
:
∀ x0 x1 x2 .
d7d78..
x0
x1
x2
⟶
∀ x3 : ο .
(
x0
=
c4def..
⟶
x1
=
x2
⟶
x3
)
⟶
(
∀ x4 x5 x6 x7 x8 .
d7d78..
x4
x6
x7
⟶
d7d78..
x5
x7
x8
⟶
x0
=
6b90c..
x4
x5
⟶
x1
=
x6
⟶
x2
=
x8
⟶
x3
)
⟶
(
x0
=
c9248..
⟶
x2
=
236c6..
⟶
x3
)
⟶
(
∀ x4 x5 x6 .
d7d78..
x4
x5
x6
⟶
x0
=
a6e19..
x4
⟶
x1
=
x5
⟶
x2
=
0b8ef..
x6
⟶
x3
)
⟶
(
∀ x4 x5 x6 .
d7d78..
x4
x5
x6
⟶
x0
=
2fe34..
x4
⟶
x1
=
x5
⟶
x2
=
6c5f4..
x6
⟶
x3
)
⟶
(
∀ x4 x5 x6 x7 x8 .
e05e6..
x5
⟶
d7d78..
x4
(
cfc98..
x6
x7
)
x8
⟶
x0
=
3e00e..
x4
x5
⟶
x1
=
cfc98..
(
0b8ef..
x6
)
x7
⟶
x2
=
x8
⟶
x3
)
⟶
(
∀ x4 x5 x6 x7 x8 .
e05e6..
x4
⟶
d7d78..
x5
(
cfc98..
x6
x7
)
x8
⟶
x0
=
3e00e..
x4
x5
⟶
x1
=
cfc98..
(
6c5f4..
x6
)
x7
⟶
x2
=
x8
⟶
x3
)
⟶
(
∀ x4 x5 x6 x7 x8 .
d7d78..
x4
x6
x7
⟶
d7d78..
x5
x6
x8
⟶
x0
=
f9341..
x4
x5
⟶
x1
=
x6
⟶
x2
=
cfc98..
x7
x8
⟶
x3
)
⟶
(
∀ x4 x5 x6 x7 .
d7d78..
x4
x5
x7
⟶
x0
=
1fa6d..
x4
⟶
x1
=
cfc98..
x5
x6
⟶
x2
=
x7
⟶
x3
)
⟶
(
∀ x4 x5 x6 x7 .
d7d78..
x4
x6
x7
⟶
x0
=
3a365..
x4
⟶
x1
=
cfc98..
x5
x6
⟶
x2
=
x7
⟶
x3
)
⟶
x3
(proof)
Known
a3634..
:
∀ x0 x1 .
c4def..
=
6b90c..
x0
x1
⟶
∀ x2 : ο .
x2
Known
5e60e..
:
c4def..
=
c9248..
⟶
∀ x0 : ο .
x0
Known
924dd..
:
∀ x0 .
c4def..
=
a6e19..
x0
⟶
∀ x1 : ο .
x1
Known
0cc7e..
:
∀ x0 .
c4def..
=
2fe34..
x0
⟶
∀ x1 : ο .
x1
Known
91964..
:
∀ x0 x1 .
c4def..
=
3e00e..
x0
x1
⟶
∀ x2 : ο .
x2
Known
a14cf..
:
∀ x0 x1 .
c4def..
=
f9341..
x0
x1
⟶
∀ x2 : ο .
x2
Known
b8b08..
:
∀ x0 .
c4def..
=
1fa6d..
x0
⟶
∀ x1 : ο .
x1
Known
f9749..
:
∀ x0 .
c4def..
=
3a365..
x0
⟶
∀ x1 : ο .
x1
Theorem
b316e..
:
∀ x0 x1 .
d7d78..
c4def..
x0
x1
⟶
x0
=
x1
(proof)
Known
ffc37..
:
∀ x0 x1 x2 x3 .
6b90c..
x0
x1
=
6b90c..
x2
x3
⟶
and
(
x0
=
x2
)
(
x1
=
x3
)
Known
dc5ae..
:
∀ x0 x1 .
6b90c..
x0
x1
=
c9248..
⟶
∀ x2 : ο .
x2
Known
a9278..
:
∀ x0 x1 x2 .
6b90c..
x0
x1
=
a6e19..
x2
⟶
∀ x3 : ο .
x3
Known
dabcf..
:
∀ x0 x1 x2 .
6b90c..
x0
x1
=
2fe34..
x2
⟶
∀ x3 : ο .
x3
Known
07fb9..
:
∀ x0 x1 x2 x3 .
6b90c..
x0
x1
=
3e00e..
x2
x3
⟶
∀ x4 : ο .
x4
Known
72b8e..
:
∀ x0 x1 x2 x3 .
6b90c..
x0
x1
=
f9341..
x2
x3
⟶
∀ x4 : ο .
x4
Known
0a32f..
:
∀ x0 x1 x2 .
6b90c..
x0
x1
=
1fa6d..
x2
⟶
∀ x3 : ο .
x3
Known
ff84b..
:
∀ x0 x1 x2 .
6b90c..
x0
x1
=
3a365..
x2
⟶
∀ x3 : ο .
x3
Theorem
8b3a5..
:
∀ x0 x1 x2 x3 .
d7d78..
(
6b90c..
x0
x1
)
x2
x3
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
d7d78..
x0
x2
x5
)
(
d7d78..
x1
x5
x3
)
⟶
x4
)
⟶
x4
(proof)
Known
84bad..
:
∀ x0 .
c9248..
=
a6e19..
x0
⟶
∀ x1 : ο .
x1
Known
1832c..
:
∀ x0 .
c9248..
=
2fe34..
x0
⟶
∀ x1 : ο .
x1
Known
77b59..
:
∀ x0 x1 .
c9248..
=
3e00e..
x0
x1
⟶
∀ x2 : ο .
x2
Known
b728e..
:
∀ x0 x1 .
c9248..
=
f9341..
x0
x1
⟶
∀ x2 : ο .
x2
Known
0482c..
:
∀ x0 .
c9248..
=
1fa6d..
x0
⟶
∀ x1 : ο .
x1
Known
36b24..
:
∀ x0 .
c9248..
=
3a365..
x0
⟶
∀ x1 : ο .
x1
Theorem
84f7f..
:
∀ x0 x1 .
d7d78..
c9248..
x0
x1
⟶
x1
=
236c6..
(proof)
Known
84af1..
:
∀ x0 x1 .
a6e19..
x0
=
a6e19..
x1
⟶
x0
=
x1
Known
7241c..
:
∀ x0 x1 .
a6e19..
x0
=
2fe34..
x1
⟶
∀ x2 : ο .
x2
Known
62a09..
:
∀ x0 x1 x2 .
a6e19..
x0
=
3e00e..
x1
x2
⟶
∀ x3 : ο .
x3
Known
cec81..
:
∀ x0 x1 x2 .
a6e19..
x0
=
f9341..
x1
x2
⟶
∀ x3 : ο .
x3
Known
4bdb9..
:
∀ x0 x1 .
a6e19..
x0
=
1fa6d..
x1
⟶
∀ x2 : ο .
x2
Known
62476..
:
∀ x0 x1 .
a6e19..
x0
=
3a365..
x1
⟶
∀ x2 : ο .
x2
Theorem
aca1a..
:
∀ x0 x1 x2 .
d7d78..
(
a6e19..
x0
)
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
d7d78..
x0
x1
x4
)
(
x2
=
0b8ef..
x4
)
⟶
x3
)
⟶
x3
(proof)
Known
2eb6f..
:
∀ x0 x1 .
2fe34..
x0
=
2fe34..
x1
⟶
x0
=
x1
Known
a0ec1..
:
∀ x0 x1 x2 .
2fe34..
x0
=
3e00e..
x1
x2
⟶
∀ x3 : ο .
x3
Known
becdb..
:
∀ x0 x1 x2 .
2fe34..
x0
=
f9341..
x1
x2
⟶
∀ x3 : ο .
x3
Known
a5def..
:
∀ x0 x1 .
2fe34..
x0
=
1fa6d..
x1
⟶
∀ x2 : ο .
x2
Known
cdd8a..
:
∀ x0 x1 .
2fe34..
x0
=
3a365..
x1
⟶
∀ x2 : ο .
x2
Theorem
42fd0..
:
∀ x0 x1 x2 .
d7d78..
(
2fe34..
x0
)
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
d7d78..
x0
x1
x4
)
(
x2
=
6c5f4..
x4
)
⟶
x3
)
⟶
x3
(proof)
Known
42e43..
:
∀ x0 x1 x2 x3 .
3e00e..
x0
x1
=
3e00e..
x2
x3
⟶
and
(
x0
=
x2
)
(
x1
=
x3
)
Known
a1a1b..
:
∀ x0 x1 x2 x3 .
3e00e..
x0
x1
=
f9341..
x2
x3
⟶
∀ x4 : ο .
x4
Known
54459..
:
∀ x0 x1 x2 .
3e00e..
x0
x1
=
1fa6d..
x2
⟶
∀ x3 : ο .
x3
Known
fb77a..
:
∀ x0 x1 x2 .
3e00e..
x0
x1
=
3a365..
x2
⟶
∀ x3 : ο .
x3
Theorem
b4261..
:
∀ x0 x1 x2 x3 .
d7d78..
(
3e00e..
x0
x1
)
x2
x3
⟶
or
(
∀ x4 : ο .
(
∀ x5 .
(
∀ x6 : ο .
(
∀ x7 .
and
(
x2
=
cfc98..
(
0b8ef..
x5
)
x7
)
(
d7d78..
x0
(
cfc98..
x5
x7
)
x3
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
(
∀ x4 : ο .
(
∀ x5 .
(
∀ x6 : ο .
(
∀ x7 .
and
(
x2
=
cfc98..
(
6c5f4..
x5
)
x7
)
(
d7d78..
x1
(
cfc98..
x5
x7
)
x3
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
(proof)
Known
063ac..
:
∀ x0 x1 x2 x3 .
f9341..
x0
x1
=
f9341..
x2
x3
⟶
and
(
x0
=
x2
)
(
x1
=
x3
)
Known
38968..
:
∀ x0 x1 x2 .
f9341..
x0
x1
=
1fa6d..
x2
⟶
∀ x3 : ο .
x3
Known
6774e..
:
∀ x0 x1 x2 .
f9341..
x0
x1
=
3a365..
x2
⟶
∀ x3 : ο .
x3
Theorem
3f6f9..
:
∀ x0 x1 x2 x3 .
d7d78..
(
f9341..
x0
x1
)
x2
x3
⟶
∀ x4 : ο .
(
∀ x5 .
(
∀ x6 : ο .
(
∀ x7 .
and
(
and
(
d7d78..
x0
x2
x5
)
(
d7d78..
x1
x2
x7
)
)
(
x3
=
cfc98..
x5
x7
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
(proof)
Known
a1c68..
:
∀ x0 x1 .
1fa6d..
x0
=
1fa6d..
x1
⟶
x0
=
x1
Known
9f429..
:
∀ x0 x1 .
1fa6d..
x0
=
3a365..
x1
⟶
∀ x2 : ο .
x2
Theorem
17be7..
:
∀ x0 x1 x2 .
d7d78..
(
1fa6d..
x0
)
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 .
(
∀ x5 : ο .
(
∀ x6 .
and
(
x1
=
cfc98..
x4
x6
)
(
d7d78..
x0
x4
x2
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
(proof)
Known
f684d..
:
∀ x0 x1 .
3a365..
x0
=
3a365..
x1
⟶
x0
=
x1
Theorem
efdff..
:
∀ x0 x1 x2 .
d7d78..
(
3a365..
x0
)
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 .
(
∀ x5 : ο .
(
∀ x6 .
and
(
x1
=
cfc98..
x4
x6
)
(
d7d78..
x0
x6
x2
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
(proof)
Param
762f0..
:
ι
→
ι
→
ι
→
ο
Conjecture
085db..
:
∀ x0 x1 x2 .
762f0..
x0
x1
x2
⟶
∀ x3 x4 :
ι → ο
.
858ff..
x1
x3
⟶
858ff..
x2
x4
⟶
∀ x5 x6 .
x3
x5
⟶
d7d78..
x0
x5
x6
⟶
x4
x6
Definition
5dc8b..
:=
λ x0 x1 .
and
(
∀ x2 .
x0
=
0b8ef..
x2
⟶
x1
=
6c5f4..
x2
)
(
∀ x2 .
x0
=
6c5f4..
x2
⟶
x1
=
0b8ef..
x2
)
Conjecture
181f2..
:
∀ x0 .
74e69..
x0
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
762f0..
x2
(
a3eb9..
x0
x0
)
(
a3eb9..
x0
x0
)
)
(
∀ x3 :
ι → ο
.
858ff..
x0
x3
⟶
∀ x4 x5 .
c0709..
x3
x3
x4
⟶
5dc8b..
x4
x5
⟶
d7d78..
x2
x4
x5
)
⟶
x1
)
⟶
x1
previous assets