Search for blocks/addresses/...
Proofgold Address
address
PULLzW9ynubf9vee7SS3pLArhBBT7K5yRfa
total
0
mg
-
conjpub
-
current assets
0aa21..
/
e1474..
bday:
1880
doc published by
PrGxv..
Definition
8e91b..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 x5 .
x0
x4
x5
⟶
x3
x4
x5
)
⟶
(
∀ x4 x5 x6 .
x3
x4
x5
⟶
x3
x5
x6
⟶
x3
x4
x6
)
⟶
x3
x1
x2
Theorem
94d41..
:
∀ x0 x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x0
x2
x3
⟶
x1
x2
x3
)
⟶
∀ x2 x3 .
8e91b..
x0
x2
x3
⟶
8e91b..
x1
x2
x3
(proof)
Definition
236c6..
:=
prim1
(
λ x0 .
x0
)
Definition
6915e..
:=
prim1
(
λ x0 .
236c6..
)
Definition
32d20..
:=
prim1
(
λ x0 .
prim1
(
λ x1 .
x0
)
)
Known
148f8..
:
∀ x0 :
ι →
ι → ι
.
236c6..
=
prim1
(
λ x2 .
prim1
(
x0
x2
)
)
⟶
∀ x1 : ο .
x1
Theorem
61590..
:
236c6..
=
6915e..
⟶
∀ x0 : ο .
x0
(proof)
Theorem
b916f..
:
236c6..
=
32d20..
⟶
∀ x0 : ο .
x0
(proof)
Known
b4755..
:
∀ x0 x1 :
ι → ι
.
prim1
x0
=
prim1
x1
⟶
x0
=
x1
Theorem
63d4e..
:
6915e..
=
32d20..
⟶
∀ x0 : ο .
x0
(proof)
Definition
57d6a..
:=
λ x0 x1 .
prim0
236c6..
(
prim0
x0
x1
)
Definition
bcddf..
:=
λ x0 .
λ x1 :
ι → ι
.
prim0
6915e..
(
prim0
x0
(
prim1
x1
)
)
Definition
d7cf0..
:=
λ x0 .
λ x1 :
ι → ι
.
prim0
32d20..
(
prim0
x0
(
prim1
x1
)
)
Definition
91fd5..
:=
λ x0 x1 .
d7cf0..
x0
(
λ x2 .
x1
)
Definition
051a7..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 x5 .
x0
x4
x5
⟶
x3
x4
x5
)
⟶
(
∀ x4 .
x3
x4
x4
)
⟶
(
∀ x4 x5 x6 x7 .
x3
x4
x5
⟶
x3
x6
x7
⟶
x3
(
57d6a..
x4
x6
)
(
57d6a..
x5
x7
)
)
⟶
(
∀ x4 x5 .
∀ x6 x7 :
ι → ι
.
x3
x4
x5
⟶
(
∀ x8 .
x3
(
x6
x8
)
(
x7
x8
)
)
⟶
x3
(
bcddf..
x4
x6
)
(
bcddf..
x5
x7
)
)
⟶
(
∀ x4 x5 .
∀ x6 x7 :
ι → ι
.
x3
x4
x5
⟶
(
∀ x8 .
x3
(
x6
x8
)
(
x7
x8
)
)
⟶
x3
(
d7cf0..
x4
x6
)
(
d7cf0..
x5
x7
)
)
⟶
x3
x1
x2
Theorem
0a05d..
:
∀ x0 x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x0
x2
x3
⟶
x1
x2
x3
)
⟶
∀ x2 x3 .
051a7..
x0
x2
x3
⟶
051a7..
x1
x2
x3
(proof)
Definition
1ca3e..
:=
λ x0 x1 .
∀ x2 :
ι →
ι → ο
.
(
∀ x3 .
∀ x4 :
ι → ι
.
∀ x5 .
x2
(
bcddf..
x3
x4
)
(
x4
x5
)
)
⟶
x2
x0
x1
Definition
93971..
:=
λ x0 x1 .
∀ x2 :
ι →
ι → ο
.
(
∀ x3 x4 .
x2
(
bcddf..
x3
(
57d6a..
x4
)
)
x4
)
⟶
x2
x0
x1
Definition
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Definition
d3ec1..
:=
λ x0 :
ι →
ι → ο
.
8e91b..
(
051a7..
(
λ x1 x2 .
or
(
x0
x1
x2
)
(
1ca3e..
x1
x2
)
)
)
Definition
13ace..
:=
λ x0 :
ι →
ι → ο
.
8e91b..
(
051a7..
(
λ x1 x2 .
or
(
or
(
x0
x1
x2
)
(
1ca3e..
x1
x2
)
)
(
93971..
x1
x2
)
)
)
Known
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Theorem
74efc..
:
∀ x0 x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x0
x2
x3
⟶
x1
x2
x3
)
⟶
∀ x2 x3 .
d3ec1..
x0
x2
x3
⟶
d3ec1..
x1
x2
x3
(proof)
Definition
False
:=
∀ x0 : ο .
x0
Definition
5c39b..
:=
λ x0 x1 .
False
Param
and
:
ο
→
ο
→
ο
Definition
a603a..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 .
or
(
x0
x3
x4
)
(
and
(
x3
=
x1
)
(
x4
=
x2
)
)
Theorem
87e44..
:
∀ x0 x1 :
ι →
ι → ο
.
∀ x2 x3 .
(
∀ x4 x5 .
x0
x4
x5
⟶
x1
x4
x5
)
⟶
∀ x4 x5 .
a603a..
x0
x2
x3
x4
x5
⟶
a603a..
x1
x2
x3
x4
x5
(proof)
Definition
f6435..
:=
λ x0 .
or
(
x0
=
32d20..
)
(
x0
=
6915e..
)
Theorem
02f21..
:
f6435..
32d20..
(proof)
Theorem
40b47..
:
f6435..
6915e..
(proof)
Definition
6fe8d..
:=
λ x0 x1 x2 :
ι →
ι → ο
.
λ x3 x4 .
∀ x5 :
(
ι →
ι → ο
)
→
ι →
ι → ο
.
(
∀ x6 :
ι →
ι → ο
.
∀ x7 x8 .
x0
x7
x8
⟶
x5
x6
x7
x8
)
⟶
(
∀ x6 :
ι →
ι → ο
.
∀ x7 x8 .
x6
x7
x8
⟶
x5
x6
x7
x8
)
⟶
(
∀ x6 :
ι →
ι → ο
.
x5
x6
32d20..
6915e..
)
⟶
(
∀ x6 :
ι →
ι → ο
.
∀ x7 x8 .
∀ x9 :
ι → ι
.
f6435..
x7
⟶
x5
x6
x8
32d20..
⟶
(
∀ x10 .
x5
(
a603a..
x6
x10
x8
)
(
x9
x10
)
x7
)
⟶
x5
x6
(
d7cf0..
x8
x9
)
x7
)
⟶
(
∀ x6 :
ι →
ι → ο
.
∀ x7 x8 x9 .
∀ x10 :
ι → ι
.
x5
x6
x7
(
d7cf0..
x9
x10
)
⟶
x5
x6
x8
x9
⟶
x5
x6
(
57d6a..
x7
x8
)
(
x10
x8
)
)
⟶
(
∀ x6 :
ι →
ι → ο
.
∀ x7 x8 .
∀ x9 x10 :
ι → ι
.
f6435..
x7
⟶
x5
x6
(
d7cf0..
x8
x10
)
x7
⟶
(
∀ x11 .
x5
(
a603a..
x6
x11
x8
)
(
x9
x11
)
(
x10
x11
)
)
⟶
x5
x6
(
bcddf..
236c6..
x9
)
(
d7cf0..
x8
x10
)
)
⟶
(
∀ x6 :
ι →
ι → ο
.
∀ x7 x8 .
∀ x9 x10 :
ι → ι
.
f6435..
x7
⟶
x5
x6
(
d7cf0..
x8
x10
)
x7
⟶
(
∀ x11 .
x5
(
a603a..
x6
x11
x8
)
(
x9
x11
)
(
x10
x11
)
)
⟶
x5
x6
(
bcddf..
x8
x9
)
(
d7cf0..
x8
x10
)
)
⟶
(
∀ x6 :
ι →
ι → ο
.
∀ x7 x8 x9 x10 x11 .
f6435..
x7
⟶
x5
x6
x8
x9
⟶
x5
x6
x10
x7
⟶
d3ec1..
x1
x9
x11
⟶
d3ec1..
x1
x10
x11
⟶
x5
x6
x8
x10
)
⟶
x5
x2
x3
x4
Theorem
c1535..
:
∀ x0 x1 x2 :
ι →
ι → ο
.
∀ x3 x4 .
x0
x3
x4
⟶
6fe8d..
x0
x1
x2
x3
x4
(proof)
Theorem
f0743..
:
∀ x0 x1 x2 :
ι →
ι → ο
.
∀ x3 x4 .
x2
x3
x4
⟶
6fe8d..
x0
x1
x2
x3
x4
(proof)
Theorem
7d6ad..
:
∀ x0 x1 x2 :
ι →
ι → ο
.
6fe8d..
x0
x1
x2
32d20..
6915e..
(proof)
Theorem
798c1..
:
∀ x0 x1 x2 :
ι →
ι → ο
.
∀ x3 x4 .
∀ x5 :
ι → ι
.
f6435..
x3
⟶
6fe8d..
x0
x1
x2
x4
32d20..
⟶
(
∀ x6 .
6fe8d..
x0
x1
(
a603a..
x2
x6
x4
)
(
x5
x6
)
x3
)
⟶
6fe8d..
x0
x1
x2
(
d7cf0..
x4
x5
)
x3
(proof)
Theorem
dfeb0..
:
∀ x0 x1 x2 :
ι →
ι → ο
.
∀ x3 x4 x5 .
∀ x6 :
ι → ι
.
6fe8d..
x0
x1
x2
x3
(
d7cf0..
x5
x6
)
⟶
6fe8d..
x0
x1
x2
x4
x5
⟶
6fe8d..
x0
x1
x2
(
57d6a..
x3
x4
)
(
x6
x4
)
(proof)
Theorem
d69a1..
:
∀ x0 x1 x2 :
ι →
ι → ο
.
∀ x3 x4 .
∀ x5 x6 :
ι → ι
.
f6435..
x3
⟶
6fe8d..
x0
x1
x2
(
d7cf0..
x4
x6
)
x3
⟶
(
∀ x7 .
6fe8d..
x0
x1
(
a603a..
x2
x7
x4
)
(
x5
x7
)
(
x6
x7
)
)
⟶
6fe8d..
x0
x1
x2
(
bcddf..
236c6..
x5
)
(
d7cf0..
x4
x6
)
(proof)
Theorem
64513..
:
∀ x0 x1 x2 :
ι →
ι → ο
.
∀ x3 x4 .
∀ x5 x6 :
ι → ι
.
f6435..
x3
⟶
6fe8d..
x0
x1
x2
(
d7cf0..
x4
x6
)
x3
⟶
(
∀ x7 .
6fe8d..
x0
x1
(
a603a..
x2
x7
x4
)
(
x5
x7
)
(
x6
x7
)
)
⟶
6fe8d..
x0
x1
x2
(
bcddf..
x4
x5
)
(
d7cf0..
x4
x6
)
(proof)
Theorem
b8a80..
:
∀ x0 x1 x2 :
ι →
ι → ο
.
∀ x3 x4 x5 x6 x7 .
f6435..
x3
⟶
6fe8d..
x0
x1
x2
x4
x5
⟶
6fe8d..
x0
x1
x2
x6
x3
⟶
d3ec1..
x1
x5
x7
⟶
d3ec1..
x1
x6
x7
⟶
6fe8d..
x0
x1
x2
x4
x6
(proof)
Theorem
913b8..
:
∀ x0 x1 x2 x3 x4 :
ι →
ι → ο
.
(
∀ x5 x6 .
x0
x5
x6
⟶
x2
x5
x6
)
⟶
(
∀ x5 x6 .
x1
x5
x6
⟶
x3
x5
x6
)
⟶
∀ x5 x6 .
6fe8d..
x0
x1
x4
x5
x6
⟶
6fe8d..
x2
x3
x4
x5
x6
(proof)
Theorem
f4e4d..
:
∀ x0 x1 x2 :
ι →
ι → ο
.
∀ x3 x4 .
6fe8d..
x0
x1
x2
x3
x4
⟶
∀ x5 :
ι →
ι → ο
.
(
∀ x6 x7 .
x2
x6
x7
⟶
x5
x6
x7
)
⟶
6fe8d..
x0
x1
x5
x3
x4
(proof)
Theorem
b581d..
:
∀ x0 x1 x2 :
ι →
ι → ο
.
∀ x3 x4 x5 .
f6435..
x3
⟶
6fe8d..
x0
x1
x2
x4
32d20..
⟶
6fe8d..
x0
x1
x2
x5
x3
⟶
6fe8d..
x0
x1
x2
(
91fd5..
x4
x5
)
x3
(proof)
Theorem
09e09..
:
∀ x0 x1 x2 :
ι →
ι → ο
.
∀ x3 x4 .
6fe8d..
x0
x1
x2
x3
32d20..
⟶
6fe8d..
x0
x1
x2
x4
32d20..
⟶
6fe8d..
x0
x1
x2
(
91fd5..
x3
x4
)
32d20..
(proof)
Definition
ee912..
:=
λ x0 :
ι →
ι → ο
.
∀ x1 x2 x3 .
x0
x1
x2
⟶
x0
x1
x3
⟶
x2
=
x3
Definition
d478c..
:=
λ x0 x1 :
ι →
ι → ο
.
λ x2 .
or
(
6fe8d..
x0
x1
5c39b..
x2
6915e..
)
(
6fe8d..
x0
x1
5c39b..
x2
32d20..
)
Theorem
9df63..
:
∀ x0 x1 :
ι →
ι → ο
.
∀ x2 .
6fe8d..
x0
x1
5c39b..
x2
6915e..
⟶
d478c..
x0
x1
x2
(proof)
Theorem
a63fb..
:
∀ x0 x1 :
ι →
ι → ο
.
∀ x2 .
6fe8d..
x0
x1
5c39b..
x2
32d20..
⟶
d478c..
x0
x1
x2
(proof)
previous assets