Search for blocks/addresses/...
Proofgold Address
address
PULx2YPEwKGmxSDo7L8eJNHqRsHzBLpTyvM
total
0
mg
-
conjpub
-
current assets
0f01f..
/
04a3f..
bday:
18218
doc published by
Pr4zB..
Definition
Church17_p
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x1 :
(
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→ ο
.
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x2
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x3
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x4
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x5
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x6
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x7
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x8
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x9
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x10
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x11
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x12
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x13
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x14
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x15
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x16
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x17
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x18
)
⟶
x1
x0
Param
u1
:
ι
Param
u2
:
ι
Param
u3
:
ι
Param
u4
:
ι
Param
u5
:
ι
Param
u6
:
ι
Param
u7
:
ι
Param
u8
:
ι
Param
u9
:
ι
Param
u10
:
ι
Param
u11
:
ι
Param
u12
:
ι
Param
u13
:
ι
Param
u14
:
ι
Param
u15
:
ι
Param
u16
:
ι
Param
TwoRamseyGraph_4_4_Church17
:
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ι
→
ι
→
ι
Definition
TwoRamseyGraph_4_4_17
:=
λ x0 x1 .
∀ x2 x3 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x2
⟶
Church17_p
x3
⟶
x0
=
x2
0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15
u16
⟶
x1
=
x3
0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15
u16
⟶
TwoRamseyGraph_4_4_Church17
x2
x3
=
λ x5 x6 .
x5
Known
ba8e9..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
x1
⟶
TwoRamseyGraph_4_4_Church17
x0
x1
=
TwoRamseyGraph_4_4_Church17
x1
x0
Theorem
bea4f..
:
∀ x0 x1 .
TwoRamseyGraph_4_4_17
x0
x1
⟶
TwoRamseyGraph_4_4_17
x1
x0
(proof)
Param
u17
:
ι
Known
66f20..
:
∀ x0 .
x0
∈
u17
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
u3
⟶
x1
u4
⟶
x1
u5
⟶
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
u11
⟶
x1
u12
⟶
x1
u13
⟶
x1
u14
⟶
x1
u15
⟶
x1
u16
⟶
x1
x0
Known
e70c8..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x0
)
Known
1b7f9..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x1
)
Known
25b64..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x2
)
Known
9e7eb..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x3
)
Known
51a81..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x4
)
Known
e224e..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x5
)
Known
5d397..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x6
)
Known
3b0d1..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x7
)
Known
e7def..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x8
)
Known
a8b9a..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x9
)
Known
4f699..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x10
)
Known
712d3..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x11
)
Known
d5e0f..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x12
)
Known
51598..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x13
)
Known
15dad..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x14
)
Known
7e8b2..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x15
)
Known
02267..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x16
)
Theorem
ec2ba..
:
∀ x0 .
x0
∈
u17
⟶
∀ x1 : ο .
(
∀ x2 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x2
⟶
x0
=
x2
0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15
u16
⟶
x1
)
⟶
x1
(proof)
Definition
Church17_perm_1_2_3_4_5_6_7_8_9_10_11_12_13_14_15_16_0
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x0
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15
x16
x17
x1
Definition
Church17_perm_16_0_1_2_3_4_5_6_7_8_9_10_11_12_13_14_15
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x0
x17
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15
x16
Known
32363..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
(
Church17_perm_16_0_1_2_3_4_5_6_7_8_9_10_11_12_13_14_15
x0
)
Known
f6e2e..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
(
Church17_perm_1_2_3_4_5_6_7_8_9_10_11_12_13_14_15_16_0
x0
)
Known
339e5..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
x1
⟶
TwoRamseyGraph_4_4_Church17
x0
x1
=
TwoRamseyGraph_4_4_Church17
(
Church17_perm_16_0_1_2_3_4_5_6_7_8_9_10_11_12_13_14_15
x0
)
(
Church17_perm_16_0_1_2_3_4_5_6_7_8_9_10_11_12_13_14_15
x1
)
Definition
Church17_perm_2_3_4_5_6_7_8_9_10_11_12_13_14_15_16_0_1
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x0
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15
x16
x17
x1
x2
Definition
Church17_perm_15_16_0_1_2_3_4_5_6_7_8_9_10_11_12_13_14
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x0
x16
x17
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15
Known
3d0f9..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
(
Church17_perm_15_16_0_1_2_3_4_5_6_7_8_9_10_11_12_13_14
x0
)
Known
e9109..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
(
Church17_perm_2_3_4_5_6_7_8_9_10_11_12_13_14_15_16_0_1
x0
)
Known
0b046..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
x1
⟶
TwoRamseyGraph_4_4_Church17
x0
x1
=
TwoRamseyGraph_4_4_Church17
(
Church17_perm_15_16_0_1_2_3_4_5_6_7_8_9_10_11_12_13_14
x0
)
(
Church17_perm_15_16_0_1_2_3_4_5_6_7_8_9_10_11_12_13_14
x1
)
Definition
Church17_perm_3_4_5_6_7_8_9_10_11_12_13_14_15_16_0_1_2
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x0
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15
x16
x17
x1
x2
x3
Definition
Church17_perm_14_15_16_0_1_2_3_4_5_6_7_8_9_10_11_12_13
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x0
x15
x16
x17
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
Known
8d815..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
(
Church17_perm_14_15_16_0_1_2_3_4_5_6_7_8_9_10_11_12_13
x0
)
Known
efbb9..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
(
Church17_perm_3_4_5_6_7_8_9_10_11_12_13_14_15_16_0_1_2
x0
)
Known
2b360..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
x1
⟶
TwoRamseyGraph_4_4_Church17
x0
x1
=
TwoRamseyGraph_4_4_Church17
(
Church17_perm_14_15_16_0_1_2_3_4_5_6_7_8_9_10_11_12_13
x0
)
(
Church17_perm_14_15_16_0_1_2_3_4_5_6_7_8_9_10_11_12_13
x1
)
Definition
Church17_perm_4_5_6_7_8_9_10_11_12_13_14_15_16_0_1_2_3
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x0
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15
x16
x17
x1
x2
x3
x4
Definition
Church17_perm_13_14_15_16_0_1_2_3_4_5_6_7_8_9_10_11_12
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x0
x14
x15
x16
x17
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
Known
7599a..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
(
Church17_perm_13_14_15_16_0_1_2_3_4_5_6_7_8_9_10_11_12
x0
)
Known
edb63..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
(
Church17_perm_4_5_6_7_8_9_10_11_12_13_14_15_16_0_1_2_3
x0
)
Known
7d016..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
x1
⟶
TwoRamseyGraph_4_4_Church17
x0
x1
=
TwoRamseyGraph_4_4_Church17
(
Church17_perm_13_14_15_16_0_1_2_3_4_5_6_7_8_9_10_11_12
x0
)
(
Church17_perm_13_14_15_16_0_1_2_3_4_5_6_7_8_9_10_11_12
x1
)
Definition
Church17_perm_5_6_7_8_9_10_11_12_13_14_15_16_0_1_2_3_4
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x0
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15
x16
x17
x1
x2
x3
x4
x5
Definition
Church17_perm_12_13_14_15_16_0_1_2_3_4_5_6_7_8_9_10_11
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x0
x13
x14
x15
x16
x17
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
Known
88890..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
(
Church17_perm_12_13_14_15_16_0_1_2_3_4_5_6_7_8_9_10_11
x0
)
Known
7166e..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
(
Church17_perm_5_6_7_8_9_10_11_12_13_14_15_16_0_1_2_3_4
x0
)
Known
31bf4..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
x1
⟶
TwoRamseyGraph_4_4_Church17
x0
x1
=
TwoRamseyGraph_4_4_Church17
(
Church17_perm_12_13_14_15_16_0_1_2_3_4_5_6_7_8_9_10_11
x0
)
(
Church17_perm_12_13_14_15_16_0_1_2_3_4_5_6_7_8_9_10_11
x1
)
Definition
Church17_perm_6_7_8_9_10_11_12_13_14_15_16_0_1_2_3_4_5
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x0
x7
x8
x9
x10
x11
x12
x13
x14
x15
x16
x17
x1
x2
x3
x4
x5
x6
Definition
Church17_perm_11_12_13_14_15_16_0_1_2_3_4_5_6_7_8_9_10
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x0
x12
x13
x14
x15
x16
x17
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
Known
54f05..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
(
Church17_perm_11_12_13_14_15_16_0_1_2_3_4_5_6_7_8_9_10
x0
)
Known
3aad7..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
(
Church17_perm_6_7_8_9_10_11_12_13_14_15_16_0_1_2_3_4_5
x0
)
Known
e43e9..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
x1
⟶
TwoRamseyGraph_4_4_Church17
x0
x1
=
TwoRamseyGraph_4_4_Church17
(
Church17_perm_11_12_13_14_15_16_0_1_2_3_4_5_6_7_8_9_10
x0
)
(
Church17_perm_11_12_13_14_15_16_0_1_2_3_4_5_6_7_8_9_10
x1
)
Definition
Church17_perm_7_8_9_10_11_12_13_14_15_16_0_1_2_3_4_5_6
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x0
x8
x9
x10
x11
x12
x13
x14
x15
x16
x17
x1
x2
x3
x4
x5
x6
x7
Definition
Church17_perm_10_11_12_13_14_15_16_0_1_2_3_4_5_6_7_8_9
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x0
x11
x12
x13
x14
x15
x16
x17
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
Known
b2372..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
(
Church17_perm_10_11_12_13_14_15_16_0_1_2_3_4_5_6_7_8_9
x0
)
Known
bfee8..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
(
Church17_perm_7_8_9_10_11_12_13_14_15_16_0_1_2_3_4_5_6
x0
)
Known
c7c1b..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
x1
⟶
TwoRamseyGraph_4_4_Church17
x0
x1
=
TwoRamseyGraph_4_4_Church17
(
Church17_perm_10_11_12_13_14_15_16_0_1_2_3_4_5_6_7_8_9
x0
)
(
Church17_perm_10_11_12_13_14_15_16_0_1_2_3_4_5_6_7_8_9
x1
)
Definition
Church17_perm_8_9_10_11_12_13_14_15_16_0_1_2_3_4_5_6_7
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x0
x9
x10
x11
x12
x13
x14
x15
x16
x17
x1
x2
x3
x4
x5
x6
x7
x8
Definition
Church17_perm_9_10_11_12_13_14_15_16_0_1_2_3_4_5_6_7_8
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x0
x10
x11
x12
x13
x14
x15
x16
x17
x1
x2
x3
x4
x5
x6
x7
x8
x9
Known
b07fc..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
(
Church17_perm_9_10_11_12_13_14_15_16_0_1_2_3_4_5_6_7_8
x0
)
Known
2bebb..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
(
Church17_perm_8_9_10_11_12_13_14_15_16_0_1_2_3_4_5_6_7
x0
)
Known
cad55..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
x1
⟶
TwoRamseyGraph_4_4_Church17
x0
x1
=
TwoRamseyGraph_4_4_Church17
(
Church17_perm_9_10_11_12_13_14_15_16_0_1_2_3_4_5_6_7_8
x0
)
(
Church17_perm_9_10_11_12_13_14_15_16_0_1_2_3_4_5_6_7_8
x1
)
Known
1c11b..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
x1
⟶
TwoRamseyGraph_4_4_Church17
x0
x1
=
TwoRamseyGraph_4_4_Church17
(
Church17_perm_8_9_10_11_12_13_14_15_16_0_1_2_3_4_5_6_7
x0
)
(
Church17_perm_8_9_10_11_12_13_14_15_16_0_1_2_3_4_5_6_7
x1
)
Known
9c3ed..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
x1
⟶
TwoRamseyGraph_4_4_Church17
x0
x1
=
TwoRamseyGraph_4_4_Church17
(
Church17_perm_7_8_9_10_11_12_13_14_15_16_0_1_2_3_4_5_6
x0
)
(
Church17_perm_7_8_9_10_11_12_13_14_15_16_0_1_2_3_4_5_6
x1
)
Known
138c9..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
x1
⟶
TwoRamseyGraph_4_4_Church17
x0
x1
=
TwoRamseyGraph_4_4_Church17
(
Church17_perm_6_7_8_9_10_11_12_13_14_15_16_0_1_2_3_4_5
x0
)
(
Church17_perm_6_7_8_9_10_11_12_13_14_15_16_0_1_2_3_4_5
x1
)
Known
c46f5..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
x1
⟶
TwoRamseyGraph_4_4_Church17
x0
x1
=
TwoRamseyGraph_4_4_Church17
(
Church17_perm_5_6_7_8_9_10_11_12_13_14_15_16_0_1_2_3_4
x0
)
(
Church17_perm_5_6_7_8_9_10_11_12_13_14_15_16_0_1_2_3_4
x1
)
Known
fd1d6..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
x1
⟶
TwoRamseyGraph_4_4_Church17
x0
x1
=
TwoRamseyGraph_4_4_Church17
(
Church17_perm_4_5_6_7_8_9_10_11_12_13_14_15_16_0_1_2_3
x0
)
(
Church17_perm_4_5_6_7_8_9_10_11_12_13_14_15_16_0_1_2_3
x1
)
Known
b6d33..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
x1
⟶
TwoRamseyGraph_4_4_Church17
x0
x1
=
TwoRamseyGraph_4_4_Church17
(
Church17_perm_3_4_5_6_7_8_9_10_11_12_13_14_15_16_0_1_2
x0
)
(
Church17_perm_3_4_5_6_7_8_9_10_11_12_13_14_15_16_0_1_2
x1
)
Known
f730a..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
x1
⟶
TwoRamseyGraph_4_4_Church17
x0
x1
=
TwoRamseyGraph_4_4_Church17
(
Church17_perm_2_3_4_5_6_7_8_9_10_11_12_13_14_15_16_0_1
x0
)
(
Church17_perm_2_3_4_5_6_7_8_9_10_11_12_13_14_15_16_0_1
x1
)
Known
c5dbb..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
x1
⟶
TwoRamseyGraph_4_4_Church17
x0
x1
=
TwoRamseyGraph_4_4_Church17
(
Church17_perm_1_2_3_4_5_6_7_8_9_10_11_12_13_14_15_16_0
x0
)
(
Church17_perm_1_2_3_4_5_6_7_8_9_10_11_12_13_14_15_16_0
x1
)
Theorem
745f5..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
∀ x1 : ο .
(
∀ x2 x3 :
(
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x4 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x4
⟶
Church17_p
(
x2
x4
)
)
⟶
(
∀ x4 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x4
⟶
Church17_p
(
x3
x4
)
)
⟶
(
∀ x4 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
x2
(
x3
x4
)
=
x4
)
⟶
(
∀ x4 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
x3
(
x2
x4
)
=
x4
)
⟶
(
∀ x4 x5 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x4
⟶
Church17_p
x5
⟶
TwoRamseyGraph_4_4_Church17
x4
x5
=
TwoRamseyGraph_4_4_Church17
(
x2
x4
)
(
x2
x5
)
)
⟶
(
x2
x0
=
λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 .
x5
)
⟶
x1
)
⟶
x1
(proof)
previous assets