Search for blocks/addresses/...

Proofgold Address

address
PUMEtk6dmbR6jKPshKp7UmKbpSN3gsxmL5K
total
0
mg
-
conjpub
-
current assets
d852e../c6d44.. bday: 9727 doc published by PrCx1..
Param lam_idlam_id : ιι
Param apap : ιιι
Definition struct_idstruct_id := λ x0 . lam_id (ap x0 0)
Param lam_complam_comp : ιιιι
Definition struct_compstruct_comp := λ x0 x1 x2 . lam_comp (ap x0 0)
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param struct_bstruct_b : ιο
Param unpack_b_ounpack_b_o : ι(ι(ιιι) → ο) → ο
Param bijbij : ιι(ιι) → ο
Definition Quasigroupstruct_b_quasigroup := λ x0 . and (struct_b x0) (unpack_b_o x0 (λ x1 . λ x2 : ι → ι → ι . and (∀ x3 . x3x1bij x1 x1 (x2 x3)) (∀ x3 . x3x1bij x1 x1 (λ x4 . x2 x4 x3))))
Param MetaCatMetaCat : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ο
Param MagmaHomHom_struct_b : ιιιο
Known 125f1..MetaCat_struct_b_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_b x1)MetaCat x0 MagmaHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0))
Theorem 58eb8..MetaCat_struct_b_quasigroup : MetaCat Quasigroup MagmaHom struct_id struct_comp
...

Param MetaFunctorMetaFunctor : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιι) → (ιιιι) → ο
Param TrueTrue : ο
Param HomSetSetHom : ιιιο
Known 79957..MetaCat_struct_b_Forgetful_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_b x1)MetaFunctor x0 MagmaHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0)) (λ x1 . True) HomSet lam_id (λ x1 x2 x3 . lam_comp x1) (λ x1 . ap x1 0) (λ x1 x2 x3 . x3)
Theorem 942b1..MetaCat_struct_b_quasigroup_Forgetful : MetaFunctor Quasigroup MagmaHom struct_id struct_comp (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (λ x0 . ap x0 0) (λ x0 x1 x2 . x2)
...

Param MetaCat_initial_pinitial_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ο
Conjecture 3ab71..MetaCat_struct_b_quasigroup_initial : ∃ x0 . ∃ x2 : ι → ι . MetaCat_initial_p Quasigroup MagmaHom struct_id struct_comp x0 x2
Param MetaCat_terminal_pterminal_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ο
Conjecture 19aaf..MetaCat_struct_b_quasigroup_terminal : ∃ x0 . ∃ x2 : ι → ι . MetaCat_terminal_p Quasigroup MagmaHom struct_id struct_comp x0 x2
Param MetaCat_coproduct_constr_pcoproduct_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιι) → (ιιιιιι) → ο
Conjecture a5180..MetaCat_struct_b_quasigroup_coproduct_constr : ∃ x0 x2 x4 : ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p Quasigroup MagmaHom struct_id struct_comp x0 x2 x4 x6
Param MetaCat_product_constr_pproduct_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιι) → (ιιιιιι) → ο
Conjecture dd5dc..MetaCat_struct_b_quasigroup_product_constr : ∃ x0 x2 x4 : ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p Quasigroup MagmaHom struct_id struct_comp x0 x2 x4 x6
Param MetaCat_coequalizer_buggy_struct_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιι) → (ιιιιι) → (ιιιιιιι) → ο
Conjecture 9e14d.. : ∃ x0 x2 : ι → ι → ι → ι → ι . ∃ x4 : ι → ι → ι → ι → ι → ι → ι . MetaCat_coequalizer_buggy_struct_p Quasigroup MagmaHom struct_id struct_comp x0 x2 x4
Param MetaCat_equalizer_buggy_struct_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιι) → (ιιιιι) → (ιιιιιιι) → ο
Conjecture 02407.. : ∃ x0 x2 : ι → ι → ι → ι → ι . ∃ x4 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_buggy_struct_p Quasigroup MagmaHom struct_id struct_comp x0 x2 x4
Param MetaCat_pushout_buggy_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιιιιι) → ο
Conjecture aaa82.. : ∃ x0 x2 x4 : ι → ι → ι → ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pushout_buggy_constr_p Quasigroup MagmaHom struct_id struct_comp x0 x2 x4 x6
Param MetaCat_pullback_buggy_struct_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιιιιι) → ο
Conjecture a08bf.. : ∃ x0 x2 x4 : ι → ι → ι → ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_buggy_struct_p Quasigroup MagmaHom struct_id struct_comp x0 x2 x4 x6
Param MetaCat_exp_constr_pproduct_exponent_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιιιι) → ο
Conjecture 58d58..MetaCat_struct_b_quasigroup_product_exponent : ∃ x0 x2 x4 : ι → ι → ι . ∃ x6 : ι → ι → ι → ι → ι → ι . ∃ x8 x10 : ι → ι → ι . ∃ x12 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p Quasigroup MagmaHom struct_id struct_comp x0 x2 x4 x6 x8 x10 x12
Param MetaCat_subobject_classifier_buggy_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ιι(ιιιι) → (ιιιιιιι) → ο
Conjecture 4550a.. : ∃ x0 . ∃ x2 : ι → ι . ∃ x4 x6 . ∃ x8 : ι → ι → ι → ι . ∃ x10 : ι → ι → ι → ι → ι → ι → ι . MetaCat_subobject_classifier_buggy_p Quasigroup MagmaHom struct_id struct_comp x0 x2 x4 x6 x8 x10
Param MetaCat_nno_pnno_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ιιι(ιιιι) → ο
Conjecture 6a5cf..MetaCat_struct_b_quasigroup_nno : ∃ x0 . ∃ x2 : ι → ι . ∃ x4 x6 x8 . ∃ x10 : ι → ι → ι → ι . MetaCat_nno_p Quasigroup MagmaHom struct_id struct_comp x0 x2 x4 x6 x8 x10
Param MetaAdjunction_strictMetaAdjunction_strict : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιι) → (ιιιι) → (ιι) → (ιιιι) → (ιι) → (ιι) → ο
Conjecture 63ebf..MetaCat_struct_b_quasigroup_left_adjoint_forgetful : ∃ x0 : ι → ι . ∃ x2 : ι → ι → ι → ι . ∃ x4 x6 : ι → ι . MetaAdjunction_strict (λ x8 . True) HomSet lam_id (λ x8 x9 x10 . lam_comp x8) Quasigroup MagmaHom struct_id struct_comp x0 x2 (λ x8 . ap x8 0) (λ x8 x9 x10 . x10) x4 x6

previous assets