Search for blocks/addresses/...
Proofgold Address
address
PUMPHss9qA4fofUtxhqrrqnGqKhUKq6kcyT
total
0
mg
-
conjpub
-
current assets
2c4d3..
/
733f2..
bday:
2096
doc published by
PrGxv..
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Param
c4def..
:
ι
Param
6b90c..
:
ι
→
ι
→
ι
Param
5e331..
:
ι
Param
a3eb9..
:
ι
→
ι
→
ι
Param
bf68c..
:
ι
→
ι
→
ι
Param
c9248..
:
ι
Param
a6e19..
:
ι
→
ι
Param
2fe34..
:
ι
→
ι
Param
3e00e..
:
ι
→
ι
→
ι
Param
f9341..
:
ι
→
ι
→
ι
Param
1fa6d..
:
ι
→
ι
Param
3a365..
:
ι
→
ι
Definition
False
:=
∀ x0 : ο .
x0
Known
92e6a..
:
∀ x0 :
ι → ι
.
∀ x1 x2 .
prim1
x0
=
prim0
x1
x2
⟶
False
Known
50787..
:
∀ x0 x1 x2 x3 .
prim0
x0
x1
=
prim0
x2
x3
⟶
x0
=
x2
Known
8b073..
:
∀ x0 x1 x2 .
prim0
(
prim1
(
λ x4 .
prim1
(
λ x5 .
prim0
(
prim0
(
prim0
x5
x4
)
(
prim0
x4
x5
)
)
(
prim0
(
prim0
x5
x5
)
(
prim0
x4
x4
)
)
)
)
)
x0
=
prim0
(
prim0
(
prim1
(
λ x4 .
prim1
(
λ x5 .
prim0
(
prim0
(
prim0
x5
x4
)
(
prim0
x4
x5
)
)
(
prim0
(
prim0
x5
x5
)
(
prim0
x4
x4
)
)
)
)
)
x1
)
x2
⟶
∀ x3 : ο .
x3
Known
6641d..
:
∀ x0 x1 x2 .
prim0
(
prim0
(
prim1
(
λ x4 .
prim1
(
λ x5 .
prim0
(
prim0
(
prim0
x5
x4
)
(
prim0
x4
x5
)
)
(
prim0
(
prim0
x5
x5
)
(
prim0
x4
x4
)
)
)
)
)
x1
)
x2
=
prim0
(
prim1
(
λ x4 .
prim1
(
λ x5 .
prim0
(
prim0
(
prim0
x5
x4
)
(
prim0
x4
x5
)
)
(
prim0
(
prim0
x5
x5
)
(
prim0
x4
x4
)
)
)
)
)
x0
⟶
∀ x3 : ο .
x3
Known
9ec26..
:
∀ x0 x1 .
5e331..
=
a3eb9..
x0
x1
⟶
∀ x2 : ο .
x2
Known
59f91..
:
∀ x0 x1 .
5e331..
=
bf68c..
x0
x1
⟶
∀ x2 : ο .
x2
Param
236c6..
:
ι
Known
f558c..
:
∀ x0 x1 .
236c6..
=
prim0
x0
x1
⟶
∀ x2 : ο .
x2
Known
93754..
:
∀ x0 x1 x2 x3 .
prim0
x0
x1
=
prim0
x2
x3
⟶
x1
=
x3
Known
db6fe..
:
∀ x0 x1 :
ι → ι
.
∀ x2 .
prim1
x0
=
prim1
x1
⟶
x0
x2
=
x1
x2
Known
a8e2e..
:
∀ x0 x1 x2 x3 .
a3eb9..
x0
x1
=
bf68c..
x2
x3
⟶
∀ x4 : ο .
x4
Known
128d8..
:
∀ x0 x1 x2 x3 .
prim0
x0
x1
=
prim0
x2
x3
⟶
∀ x4 : ο .
(
x0
=
x2
⟶
x1
=
x3
⟶
x4
)
⟶
x4
Known
5e750..
:
∀ x0 x1 x2 x3 .
a3eb9..
x0
x1
=
a3eb9..
x2
x3
⟶
and
(
x0
=
x2
)
(
x1
=
x3
)
Known
2f86f..
:
∀ x0 x1 x2 x3 .
bf68c..
x0
x1
=
bf68c..
x2
x3
⟶
and
(
x0
=
x2
)
(
x1
=
x3
)
Known
a3634..
:
∀ x0 x1 .
c4def..
=
6b90c..
x0
x1
⟶
∀ x2 : ο .
x2
Known
0286c..
:
∀ x0 x1 .
prim0
x0
x1
=
236c6..
⟶
False
Known
5e60e..
:
c4def..
=
c9248..
⟶
∀ x0 : ο .
x0
Known
dc5ae..
:
∀ x0 x1 .
6b90c..
x0
x1
=
c9248..
⟶
∀ x2 : ο .
x2
Known
924dd..
:
∀ x0 .
c4def..
=
a6e19..
x0
⟶
∀ x1 : ο .
x1
Known
a9278..
:
∀ x0 x1 x2 .
6b90c..
x0
x1
=
a6e19..
x2
⟶
∀ x3 : ο .
x3
Known
84bad..
:
∀ x0 .
c9248..
=
a6e19..
x0
⟶
∀ x1 : ο .
x1
Known
0cc7e..
:
∀ x0 .
c4def..
=
2fe34..
x0
⟶
∀ x1 : ο .
x1
Known
dabcf..
:
∀ x0 x1 x2 .
6b90c..
x0
x1
=
2fe34..
x2
⟶
∀ x3 : ο .
x3
Known
1832c..
:
∀ x0 .
c9248..
=
2fe34..
x0
⟶
∀ x1 : ο .
x1
Known
7241c..
:
∀ x0 x1 .
a6e19..
x0
=
2fe34..
x1
⟶
∀ x2 : ο .
x2
Known
91964..
:
∀ x0 x1 .
c4def..
=
3e00e..
x0
x1
⟶
∀ x2 : ο .
x2
Known
07fb9..
:
∀ x0 x1 x2 x3 .
6b90c..
x0
x1
=
3e00e..
x2
x3
⟶
∀ x4 : ο .
x4
Known
77b59..
:
∀ x0 x1 .
c9248..
=
3e00e..
x0
x1
⟶
∀ x2 : ο .
x2
Known
62a09..
:
∀ x0 x1 x2 .
a6e19..
x0
=
3e00e..
x1
x2
⟶
∀ x3 : ο .
x3
Known
a0ec1..
:
∀ x0 x1 x2 .
2fe34..
x0
=
3e00e..
x1
x2
⟶
∀ x3 : ο .
x3
Known
a14cf..
:
∀ x0 x1 .
c4def..
=
f9341..
x0
x1
⟶
∀ x2 : ο .
x2
Known
72b8e..
:
∀ x0 x1 x2 x3 .
6b90c..
x0
x1
=
f9341..
x2
x3
⟶
∀ x4 : ο .
x4
Known
b728e..
:
∀ x0 x1 .
c9248..
=
f9341..
x0
x1
⟶
∀ x2 : ο .
x2
Known
cec81..
:
∀ x0 x1 x2 .
a6e19..
x0
=
f9341..
x1
x2
⟶
∀ x3 : ο .
x3
Known
becdb..
:
∀ x0 x1 x2 .
2fe34..
x0
=
f9341..
x1
x2
⟶
∀ x3 : ο .
x3
Known
a1a1b..
:
∀ x0 x1 x2 x3 .
3e00e..
x0
x1
=
f9341..
x2
x3
⟶
∀ x4 : ο .
x4
Known
b8b08..
:
∀ x0 .
c4def..
=
1fa6d..
x0
⟶
∀ x1 : ο .
x1
Known
0a32f..
:
∀ x0 x1 x2 .
6b90c..
x0
x1
=
1fa6d..
x2
⟶
∀ x3 : ο .
x3
Known
0482c..
:
∀ x0 .
c9248..
=
1fa6d..
x0
⟶
∀ x1 : ο .
x1
Known
4bdb9..
:
∀ x0 x1 .
a6e19..
x0
=
1fa6d..
x1
⟶
∀ x2 : ο .
x2
Known
a5def..
:
∀ x0 x1 .
2fe34..
x0
=
1fa6d..
x1
⟶
∀ x2 : ο .
x2
Known
54459..
:
∀ x0 x1 x2 .
3e00e..
x0
x1
=
1fa6d..
x2
⟶
∀ x3 : ο .
x3
Known
38968..
:
∀ x0 x1 x2 .
f9341..
x0
x1
=
1fa6d..
x2
⟶
∀ x3 : ο .
x3
Known
f9749..
:
∀ x0 .
c4def..
=
3a365..
x0
⟶
∀ x1 : ο .
x1
Known
ff84b..
:
∀ x0 x1 x2 .
6b90c..
x0
x1
=
3a365..
x2
⟶
∀ x3 : ο .
x3
Known
36b24..
:
∀ x0 .
c9248..
=
3a365..
x0
⟶
∀ x1 : ο .
x1
Known
62476..
:
∀ x0 x1 .
a6e19..
x0
=
3a365..
x1
⟶
∀ x2 : ο .
x2
Known
cdd8a..
:
∀ x0 x1 .
2fe34..
x0
=
3a365..
x1
⟶
∀ x2 : ο .
x2
Known
fb77a..
:
∀ x0 x1 x2 .
3e00e..
x0
x1
=
3a365..
x2
⟶
∀ x3 : ο .
x3
Known
6774e..
:
∀ x0 x1 x2 .
f9341..
x0
x1
=
3a365..
x2
⟶
∀ x3 : ο .
x3
Known
9f429..
:
∀ x0 x1 .
1fa6d..
x0
=
3a365..
x1
⟶
∀ x2 : ο .
x2
Known
ffc37..
:
∀ x0 x1 x2 x3 .
6b90c..
x0
x1
=
6b90c..
x2
x3
⟶
and
(
x0
=
x2
)
(
x1
=
x3
)
Known
ffefa..
:
∀ x0 x1 x2 x3 .
6b90c..
x0
x1
=
6b90c..
x2
x3
⟶
x0
=
x2
Known
af84e..
:
∀ x0 x1 x2 x3 .
6b90c..
x0
x1
=
6b90c..
x2
x3
⟶
x1
=
x3
Known
84af1..
:
∀ x0 x1 .
a6e19..
x0
=
a6e19..
x1
⟶
x0
=
x1
Known
2eb6f..
:
∀ x0 x1 .
2fe34..
x0
=
2fe34..
x1
⟶
x0
=
x1
Known
42e43..
:
∀ x0 x1 x2 x3 .
3e00e..
x0
x1
=
3e00e..
x2
x3
⟶
and
(
x0
=
x2
)
(
x1
=
x3
)
Known
ee7eb..
:
∀ x0 x1 x2 x3 .
3e00e..
x0
x1
=
3e00e..
x2
x3
⟶
x0
=
x2
Known
67376..
:
∀ x0 x1 x2 x3 .
3e00e..
x0
x1
=
3e00e..
x2
x3
⟶
x1
=
x3
Known
063ac..
:
∀ x0 x1 x2 x3 .
f9341..
x0
x1
=
f9341..
x2
x3
⟶
and
(
x0
=
x2
)
(
x1
=
x3
)
Known
9efcd..
:
∀ x0 x1 x2 x3 .
f9341..
x0
x1
=
f9341..
x2
x3
⟶
x0
=
x2
Known
2b512..
:
∀ x0 x1 x2 x3 .
f9341..
x0
x1
=
f9341..
x2
x3
⟶
x1
=
x3
Known
a1c68..
:
∀ x0 x1 .
1fa6d..
x0
=
1fa6d..
x1
⟶
x0
=
x1
Known
f684d..
:
∀ x0 x1 .
3a365..
x0
=
3a365..
x1
⟶
x0
=
x1
Param
74e69..
:
ι
→
ο
Known
e5778..
:
74e69..
5e331..
Known
c4252..
:
∀ x0 x1 .
74e69..
x0
⟶
74e69..
x1
⟶
74e69..
(
a3eb9..
x0
x1
)
Known
fbf8c..
:
∀ x0 x1 .
74e69..
x0
⟶
74e69..
x1
⟶
74e69..
(
bf68c..
x0
x1
)
Known
facf7..
:
∀ x0 :
ι → ο
.
x0
5e331..
⟶
(
∀ x1 x2 .
74e69..
x1
⟶
x0
x1
⟶
74e69..
x2
⟶
x0
x2
⟶
x0
(
a3eb9..
x1
x2
)
)
⟶
(
∀ x1 x2 .
74e69..
x1
⟶
x0
x1
⟶
74e69..
x2
⟶
x0
x2
⟶
x0
(
bf68c..
x1
x2
)
)
⟶
∀ x1 .
74e69..
x1
⟶
x0
x1
Known
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
75262..
:
∀ x0 x1 .
74e69..
(
a3eb9..
x0
x1
)
⟶
and
(
74e69..
x0
)
(
74e69..
x1
)
Known
826e0..
:
∀ x0 x1 .
74e69..
(
bf68c..
x0
x1
)
⟶
and
(
74e69..
x0
)
(
74e69..
x1
)
Param
e05e6..
:
ι
→
ο
Known
b24e2..
:
e05e6..
c4def..
Known
05df6..
:
∀ x0 x1 .
e05e6..
x0
⟶
e05e6..
x1
⟶
e05e6..
(
6b90c..
x0
x1
)
Known
9dc64..
:
e05e6..
c9248..
Known
82f14..
:
∀ x0 .
e05e6..
x0
⟶
e05e6..
(
a6e19..
x0
)
Known
6d5ea..
:
∀ x0 .
e05e6..
x0
⟶
e05e6..
(
2fe34..
x0
)
Known
1a774..
:
∀ x0 x1 .
e05e6..
x0
⟶
e05e6..
x1
⟶
e05e6..
(
3e00e..
x0
x1
)
Known
6891d..
:
∀ x0 x1 .
e05e6..
x0
⟶
e05e6..
x1
⟶
e05e6..
(
f9341..
x0
x1
)
Known
96df8..
:
∀ x0 .
e05e6..
x0
⟶
e05e6..
(
1fa6d..
x0
)
Known
b6c01..
:
∀ x0 .
e05e6..
x0
⟶
e05e6..
(
3a365..
x0
)
Definition
762f0..
:=
λ x0 x1 x2 .
∀ x3 :
ι →
ι →
ι → ο
.
(
∀ x4 .
74e69..
x4
⟶
x3
c4def..
x4
x4
)
⟶
(
∀ x4 x5 x6 x7 x8 .
x3
x7
x4
x5
⟶
x3
x8
x5
x6
⟶
x3
(
6b90c..
x7
x8
)
x4
x6
)
⟶
(
∀ x4 .
74e69..
x4
⟶
x3
c9248..
x4
5e331..
)
⟶
(
∀ x4 x5 x6 x7 .
74e69..
x6
⟶
x3
x7
x4
x5
⟶
x3
(
a6e19..
x7
)
x4
(
a3eb9..
x5
x6
)
)
⟶
(
∀ x4 x5 x6 x7 .
74e69..
x5
⟶
x3
x7
x4
x6
⟶
x3
(
2fe34..
x7
)
x4
(
a3eb9..
x5
x6
)
)
⟶
(
∀ x4 x5 x6 x7 x8 x9 .
x3
x8
(
bf68c..
x4
x6
)
x7
⟶
x3
x9
(
bf68c..
x5
x6
)
x7
⟶
x3
(
3e00e..
x8
x9
)
(
bf68c..
(
a3eb9..
x4
x5
)
x6
)
x7
)
⟶
(
∀ x4 x5 x6 x7 x8 .
x3
x7
x4
x5
⟶
x3
x8
x4
x6
⟶
x3
(
f9341..
x7
x8
)
x4
(
bf68c..
x5
x6
)
)
⟶
(
∀ x4 x5 x6 x7 .
74e69..
x5
⟶
x3
x7
x4
x6
⟶
x3
(
1fa6d..
x7
)
(
bf68c..
x4
x5
)
x6
)
⟶
(
∀ x4 x5 x6 x7 .
74e69..
x4
⟶
x3
x7
x5
x6
⟶
x3
(
3a365..
x7
)
(
bf68c..
x4
x5
)
x6
)
⟶
x3
x0
x1
x2
Theorem
010e7..
:
∀ x0 .
74e69..
x0
⟶
762f0..
c4def..
x0
x0
(proof)
Theorem
0333b..
:
∀ x0 x1 x2 x3 x4 .
762f0..
x3
x0
x1
⟶
762f0..
x4
x1
x2
⟶
762f0..
(
6b90c..
x3
x4
)
x0
x2
(proof)
Theorem
ead5a..
:
∀ x0 .
74e69..
x0
⟶
762f0..
c9248..
x0
5e331..
(proof)
Theorem
80667..
:
∀ x0 x1 x2 x3 .
74e69..
x2
⟶
762f0..
x3
x0
x1
⟶
762f0..
(
a6e19..
x3
)
x0
(
a3eb9..
x1
x2
)
(proof)
Theorem
f5f14..
:
∀ x0 x1 x2 x3 .
74e69..
x1
⟶
762f0..
x3
x0
x2
⟶
762f0..
(
2fe34..
x3
)
x0
(
a3eb9..
x1
x2
)
(proof)
Theorem
8353a..
:
∀ x0 x1 x2 x3 x4 x5 .
762f0..
x4
(
bf68c..
x0
x2
)
x3
⟶
762f0..
x5
(
bf68c..
x1
x2
)
x3
⟶
762f0..
(
3e00e..
x4
x5
)
(
bf68c..
(
a3eb9..
x0
x1
)
x2
)
x3
(proof)
Theorem
ba8a3..
:
∀ x0 x1 x2 x3 x4 .
762f0..
x3
x0
x1
⟶
762f0..
x4
x0
x2
⟶
762f0..
(
f9341..
x3
x4
)
x0
(
bf68c..
x1
x2
)
(proof)
Theorem
b8429..
:
∀ x0 x1 x2 x3 .
74e69..
x1
⟶
762f0..
x3
x0
x2
⟶
762f0..
(
1fa6d..
x3
)
(
bf68c..
x0
x1
)
x2
(proof)
Theorem
383fe..
:
∀ x0 x1 x2 x3 .
74e69..
x0
⟶
762f0..
x3
x1
x2
⟶
762f0..
(
3a365..
x3
)
(
bf68c..
x0
x1
)
x2
(proof)
Theorem
4eb50..
:
∀ x0 :
ι →
ι →
ι → ο
.
(
∀ x1 .
74e69..
x1
⟶
x0
c4def..
x1
x1
)
⟶
(
∀ x1 x2 x3 x4 x5 .
762f0..
x4
x1
x2
⟶
x0
x4
x1
x2
⟶
762f0..
x5
x2
x3
⟶
x0
x5
x2
x3
⟶
x0
(
6b90c..
x4
x5
)
x1
x3
)
⟶
(
∀ x1 .
74e69..
x1
⟶
x0
c9248..
x1
5e331..
)
⟶
(
∀ x1 x2 x3 x4 .
74e69..
x3
⟶
762f0..
x4
x1
x2
⟶
x0
x4
x1
x2
⟶
x0
(
a6e19..
x4
)
x1
(
a3eb9..
x2
x3
)
)
⟶
(
∀ x1 x2 x3 x4 .
74e69..
x2
⟶
762f0..
x4
x1
x3
⟶
x0
x4
x1
x3
⟶
x0
(
2fe34..
x4
)
x1
(
a3eb9..
x2
x3
)
)
⟶
(
∀ x1 x2 x3 x4 x5 x6 .
762f0..
x5
(
bf68c..
x1
x3
)
x4
⟶
x0
x5
(
bf68c..
x1
x3
)
x4
⟶
762f0..
x6
(
bf68c..
x2
x3
)
x4
⟶
x0
x6
(
bf68c..
x2
x3
)
x4
⟶
x0
(
3e00e..
x5
x6
)
(
bf68c..
(
a3eb9..
x1
x2
)
x3
)
x4
)
⟶
(
∀ x1 x2 x3 x4 x5 .
762f0..
x4
x1
x2
⟶
x0
x4
x1
x2
⟶
762f0..
x5
x1
x3
⟶
x0
x5
x1
x3
⟶
x0
(
f9341..
x4
x5
)
x1
(
bf68c..
x2
x3
)
)
⟶
(
∀ x1 x2 x3 x4 .
74e69..
x2
⟶
762f0..
x4
x1
x3
⟶
x0
x4
x1
x3
⟶
x0
(
1fa6d..
x4
)
(
bf68c..
x1
x2
)
x3
)
⟶
(
∀ x1 x2 x3 x4 .
74e69..
x1
⟶
762f0..
x4
x2
x3
⟶
x0
x4
x2
x3
⟶
x0
(
3a365..
x4
)
(
bf68c..
x1
x2
)
x3
)
⟶
∀ x1 x2 x3 .
762f0..
x1
x2
x3
⟶
x0
x1
x2
x3
(proof)
Theorem
beff0..
:
∀ x0 x1 x2 .
762f0..
x0
x1
x2
⟶
and
(
and
(
e05e6..
x0
)
(
74e69..
x1
)
)
(
74e69..
x2
)
(proof)
previous assets