Search for blocks/addresses/...
Proofgold Address
address
PUMc8c6XCwpNw7K1mK12L1W72Jv2SiR5LbZ
total
0
mg
-
conjpub
-
current assets
41b30..
/
9501c..
bday:
19014
doc published by
Pr4zB..
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
u1
:=
1
Definition
u2
:=
ordsucc
u1
Definition
u3
:=
ordsucc
u2
Definition
u4
:=
ordsucc
u3
Definition
u5
:=
ordsucc
u4
Definition
u6
:=
ordsucc
u5
Definition
u7
:=
ordsucc
u6
Definition
u8
:=
ordsucc
u7
Definition
u9
:=
ordsucc
u8
Definition
u10
:=
ordsucc
u9
Definition
u11
:=
ordsucc
u10
Definition
u12
:=
ordsucc
u11
Definition
u13
:=
ordsucc
u12
Definition
u14
:=
ordsucc
u13
Definition
u15
:=
ordsucc
u14
Definition
u16
:=
ordsucc
u15
Definition
u17
:=
ordsucc
u16
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Known
2c104..
:
0
∈
16
Theorem
c5b55..
:
0
∈
u17
(proof)
Known
6ec80..
:
1
∈
16
Theorem
f6e42..
:
u1
∈
u17
(proof)
Known
b34ab..
:
2
∈
16
Theorem
9502b..
:
u2
∈
u17
(proof)
Known
f312e..
:
3
∈
16
Theorem
35c0a..
:
u3
∈
u17
(proof)
Known
add3d..
:
4
∈
16
Theorem
793dd..
:
u4
∈
u17
(proof)
Param
ap
ap
:
ι
→
ι
→
ι
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Theorem
192ab..
:
(
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 .
x3
∈
x1
⟶
ap
(
lam
x1
(
λ x5 .
If_i
(
x5
=
x3
)
x0
(
x2
(
ordsucc
x3
)
x5
)
)
)
x3
=
x0
)
⟶
(
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 .
(
x4
=
x3
⟶
∀ x5 : ο .
x5
)
⟶
ap
(
lam
x1
(
λ x6 .
If_i
(
x6
=
x3
)
x0
(
x2
(
ordsucc
x3
)
x6
)
)
)
x4
=
ap
(
lam
x1
(
x2
(
ordsucc
x3
)
)
)
x4
)
⟶
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
ap
(
lam
17
(
λ x18 .
If_i
(
x18
=
0
)
x0
(
If_i
(
x18
=
1
)
x1
(
If_i
(
x18
=
2
)
x2
(
If_i
(
x18
=
3
)
x3
(
If_i
(
x18
=
4
)
x4
(
If_i
(
x18
=
5
)
x5
(
If_i
(
x18
=
6
)
x6
(
If_i
(
x18
=
7
)
x7
(
If_i
(
x18
=
8
)
x8
(
If_i
(
x18
=
9
)
x9
(
If_i
(
x18
=
10
)
x10
(
If_i
(
x18
=
11
)
x11
(
If_i
(
x18
=
12
)
x12
(
If_i
(
x18
=
13
)
x13
(
If_i
(
x18
=
14
)
x14
(
If_i
(
x18
=
15
)
x15
x16
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
0
=
x0
(proof)
Known
neq_1_0
neq_1_0
:
u1
=
0
⟶
∀ x0 : ο .
x0
Theorem
74e99..
:
(
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 .
x3
∈
x1
⟶
ap
(
lam
x1
(
λ x5 .
If_i
(
x5
=
x3
)
x0
(
x2
(
ordsucc
x3
)
x5
)
)
)
x3
=
x0
)
⟶
(
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 .
(
x4
=
x3
⟶
∀ x5 : ο .
x5
)
⟶
ap
(
lam
x1
(
λ x6 .
If_i
(
x6
=
x3
)
x0
(
x2
(
ordsucc
x3
)
x6
)
)
)
x4
=
ap
(
lam
x1
(
x2
(
ordsucc
x3
)
)
)
x4
)
⟶
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
ap
(
lam
17
(
λ x18 .
If_i
(
x18
=
0
)
x0
(
If_i
(
x18
=
1
)
x1
(
If_i
(
x18
=
2
)
x2
(
If_i
(
x18
=
3
)
x3
(
If_i
(
x18
=
4
)
x4
(
If_i
(
x18
=
5
)
x5
(
If_i
(
x18
=
6
)
x6
(
If_i
(
x18
=
7
)
x7
(
If_i
(
x18
=
8
)
x8
(
If_i
(
x18
=
9
)
x9
(
If_i
(
x18
=
10
)
x10
(
If_i
(
x18
=
11
)
x11
(
If_i
(
x18
=
12
)
x12
(
If_i
(
x18
=
13
)
x13
(
If_i
(
x18
=
14
)
x14
(
If_i
(
x18
=
15
)
x15
x16
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
u1
=
x1
(proof)
Known
neq_2_0
neq_2_0
:
u2
=
0
⟶
∀ x0 : ο .
x0
Known
neq_2_1
neq_2_1
:
u2
=
u1
⟶
∀ x0 : ο .
x0
Theorem
c7cd7..
:
(
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 .
x3
∈
x1
⟶
ap
(
lam
x1
(
λ x5 .
If_i
(
x5
=
x3
)
x0
(
x2
(
ordsucc
x3
)
x5
)
)
)
x3
=
x0
)
⟶
(
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 .
(
x4
=
x3
⟶
∀ x5 : ο .
x5
)
⟶
ap
(
lam
x1
(
λ x6 .
If_i
(
x6
=
x3
)
x0
(
x2
(
ordsucc
x3
)
x6
)
)
)
x4
=
ap
(
lam
x1
(
x2
(
ordsucc
x3
)
)
)
x4
)
⟶
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
ap
(
lam
17
(
λ x18 .
If_i
(
x18
=
0
)
x0
(
If_i
(
x18
=
1
)
x1
(
If_i
(
x18
=
2
)
x2
(
If_i
(
x18
=
3
)
x3
(
If_i
(
x18
=
4
)
x4
(
If_i
(
x18
=
5
)
x5
(
If_i
(
x18
=
6
)
x6
(
If_i
(
x18
=
7
)
x7
(
If_i
(
x18
=
8
)
x8
(
If_i
(
x18
=
9
)
x9
(
If_i
(
x18
=
10
)
x10
(
If_i
(
x18
=
11
)
x11
(
If_i
(
x18
=
12
)
x12
(
If_i
(
x18
=
13
)
x13
(
If_i
(
x18
=
14
)
x14
(
If_i
(
x18
=
15
)
x15
x16
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
u2
=
x2
(proof)
Known
neq_3_0
neq_3_0
:
u3
=
0
⟶
∀ x0 : ο .
x0
Known
neq_3_1
neq_3_1
:
u3
=
u1
⟶
∀ x0 : ο .
x0
Known
neq_3_2
neq_3_2
:
u3
=
u2
⟶
∀ x0 : ο .
x0
Theorem
2a0b0..
:
(
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 .
x3
∈
x1
⟶
ap
(
lam
x1
(
λ x5 .
If_i
(
x5
=
x3
)
x0
(
x2
(
ordsucc
x3
)
x5
)
)
)
x3
=
x0
)
⟶
(
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 .
(
x4
=
x3
⟶
∀ x5 : ο .
x5
)
⟶
ap
(
lam
x1
(
λ x6 .
If_i
(
x6
=
x3
)
x0
(
x2
(
ordsucc
x3
)
x6
)
)
)
x4
=
ap
(
lam
x1
(
x2
(
ordsucc
x3
)
)
)
x4
)
⟶
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
ap
(
lam
17
(
λ x18 .
If_i
(
x18
=
0
)
x0
(
If_i
(
x18
=
1
)
x1
(
If_i
(
x18
=
2
)
x2
(
If_i
(
x18
=
3
)
x3
(
If_i
(
x18
=
4
)
x4
(
If_i
(
x18
=
5
)
x5
(
If_i
(
x18
=
6
)
x6
(
If_i
(
x18
=
7
)
x7
(
If_i
(
x18
=
8
)
x8
(
If_i
(
x18
=
9
)
x9
(
If_i
(
x18
=
10
)
x10
(
If_i
(
x18
=
11
)
x11
(
If_i
(
x18
=
12
)
x12
(
If_i
(
x18
=
13
)
x13
(
If_i
(
x18
=
14
)
x14
(
If_i
(
x18
=
15
)
x15
x16
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
u3
=
x3
(proof)
Known
neq_4_0
neq_4_0
:
u4
=
0
⟶
∀ x0 : ο .
x0
Known
neq_4_1
neq_4_1
:
u4
=
u1
⟶
∀ x0 : ο .
x0
Known
neq_4_2
neq_4_2
:
u4
=
u2
⟶
∀ x0 : ο .
x0
Known
neq_4_3
neq_4_3
:
u4
=
u3
⟶
∀ x0 : ο .
x0
Theorem
b09cb..
:
(
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 .
x3
∈
x1
⟶
ap
(
lam
x1
(
λ x5 .
If_i
(
x5
=
x3
)
x0
(
x2
(
ordsucc
x3
)
x5
)
)
)
x3
=
x0
)
⟶
(
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 .
(
x4
=
x3
⟶
∀ x5 : ο .
x5
)
⟶
ap
(
lam
x1
(
λ x6 .
If_i
(
x6
=
x3
)
x0
(
x2
(
ordsucc
x3
)
x6
)
)
)
x4
=
ap
(
lam
x1
(
x2
(
ordsucc
x3
)
)
)
x4
)
⟶
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
ap
(
lam
17
(
λ x18 .
If_i
(
x18
=
0
)
x0
(
If_i
(
x18
=
1
)
x1
(
If_i
(
x18
=
2
)
x2
(
If_i
(
x18
=
3
)
x3
(
If_i
(
x18
=
4
)
x4
(
If_i
(
x18
=
5
)
x5
(
If_i
(
x18
=
6
)
x6
(
If_i
(
x18
=
7
)
x7
(
If_i
(
x18
=
8
)
x8
(
If_i
(
x18
=
9
)
x9
(
If_i
(
x18
=
10
)
x10
(
If_i
(
x18
=
11
)
x11
(
If_i
(
x18
=
12
)
x12
(
If_i
(
x18
=
13
)
x13
(
If_i
(
x18
=
14
)
x14
(
If_i
(
x18
=
15
)
x15
x16
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
u4
=
x4
(proof)
previous assets