Search for blocks/addresses/...
Proofgold Address
address
PUMpo2jyGq1Cx9p9SnHvx8EuhiM5prWz4da
total
0
mg
-
conjpub
-
current assets
936b9..
/
02ad9..
bday:
5881
doc published by
Pr6Pc..
Param
struct_b_b_e_e
struct_b_b_e_e
:
ι
→
ο
Param
pack_b_b_e_e
pack_b_b_e_e
:
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
→
ι
Param
ap
ap
:
ι
→
ι
→
ι
Definition
decode_b
decode_b
:=
λ x0 x1 .
ap
(
ap
x0
x1
)
Param
ordsucc
ordsucc
:
ι
→
ι
Known
struct_b_b_e_e_eta
:
∀ x0 .
struct_b_b_e_e
x0
⟶
x0
=
pack_b_b_e_e
(
ap
x0
0
)
(
decode_b
(
ap
x0
1
)
)
(
decode_b
(
ap
x0
2
)
)
(
ap
x0
3
)
(
ap
x0
4
)
Known
pack_struct_b_b_e_e_E1
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
struct_b_b_e_e
(
pack_b_b_e_e
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x1
x5
x6
∈
x0
Known
pack_struct_b_b_e_e_E2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
struct_b_b_e_e
(
pack_b_b_e_e
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x2
x5
x6
∈
x0
Known
pack_struct_b_b_e_e_E3
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
struct_b_b_e_e
(
pack_b_b_e_e
x0
x1
x2
x3
x4
)
⟶
x3
∈
x0
Known
pack_struct_b_b_e_e_E4
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
struct_b_b_e_e
(
pack_b_b_e_e
x0
x1
x2
x3
x4
)
⟶
x4
∈
x0
Definition
field0
RealsStruct_carrier
:=
λ x0 .
ap
x0
0
Definition
field1b
RealsStruct_plus
:=
λ x0 .
decode_b
(
ap
x0
1
)
Definition
field2b
RealsStruct_mult
:=
λ x0 .
decode_b
(
ap
x0
2
)
Definition
field3
Field_zero
:=
λ x0 .
ap
x0
3
Definition
field4
RealsStruct_zero
:=
λ x0 .
ap
x0
4
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
unpack_b_b_e_e_o
unpack_b_b_e_e_o
:
ι
→
(
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
→
ο
) →
ο
Param
explicit_CRing_with_id
explicit_CRing_with_id
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ο
Definition
CRing_with_id
CRing_with_id
:=
λ x0 .
and
(
struct_b_b_e_e
x0
)
(
unpack_b_b_e_e_o
x0
(
λ x1 .
λ x2 x3 :
ι →
ι → ι
.
λ x4 x5 .
explicit_CRing_with_id
x1
x4
x5
x2
x3
)
)
Theorem
CRing_with_id_eta
CRing_with_id_eta
:
∀ x0 .
CRing_with_id
x0
⟶
x0
=
pack_b_b_e_e
(
field0
x0
)
(
field1b
x0
)
(
field2b
x0
)
(
field3
x0
)
(
field4
x0
)
(proof)
Known
CRing_with_id_unpack_eq
CRing_with_id_unpack_eq
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
unpack_b_b_e_e_o
(
pack_b_b_e_e
x0
x1
x2
x3
x4
)
(
λ x6 .
λ x7 x8 :
ι →
ι → ι
.
λ x9 x10 .
explicit_CRing_with_id
x6
x9
x10
x7
x8
)
=
explicit_CRing_with_id
x0
x3
x4
x1
x2
Theorem
CRing_with_id_explicit_CRing_with_id
CRing_with_id_explicit_CRing_with_id
:
∀ x0 .
CRing_with_id
x0
⟶
explicit_CRing_with_id
(
field0
x0
)
(
field3
x0
)
(
field4
x0
)
(
field1b
x0
)
(
field2b
x0
)
(proof)
Theorem
CRing_with_id_zero_In
CRing_with_id_zero_In
:
∀ x0 .
CRing_with_id
x0
⟶
field3
x0
∈
field0
x0
(proof)
Theorem
CRing_with_id_one_In
CRing_with_id_one_In
:
∀ x0 .
CRing_with_id
x0
⟶
field4
x0
∈
field0
x0
(proof)
Theorem
CRing_with_id_plus_clos
CRing_with_id_plus_clos
:
∀ x0 .
CRing_with_id
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field1b
x0
x1
x2
∈
field0
x0
(proof)
Theorem
CRing_with_id_mult_clos
CRing_with_id_mult_clos
:
∀ x0 .
CRing_with_id
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field2b
x0
x1
x2
∈
field0
x0
(proof)
Known
explicit_CRing_with_id_E
explicit_CRing_with_id_E
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 : ο .
(
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x6
x7
∈
x0
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x3
x6
(
x3
x7
x8
)
=
x3
(
x3
x6
x7
)
x8
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x6
x7
=
x3
x7
x6
)
⟶
x1
∈
x0
⟶
(
∀ x6 .
x6
∈
x0
⟶
x3
x1
x6
=
x6
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
x8
∈
x0
)
(
x3
x6
x8
=
x1
)
⟶
x7
)
⟶
x7
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x6
x7
∈
x0
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x4
x6
(
x4
x7
x8
)
=
x4
(
x4
x6
x7
)
x8
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x6
x7
=
x4
x7
x6
)
⟶
x2
∈
x0
⟶
(
x2
=
x1
⟶
∀ x6 : ο .
x6
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
x4
x2
x6
=
x6
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x4
x6
(
x3
x7
x8
)
=
x3
(
x4
x6
x7
)
(
x4
x6
x8
)
)
⟶
x5
)
⟶
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
x5
Theorem
CRing_with_id_plus_assoc
CRing_with_id_plus_assoc
:
∀ x0 .
CRing_with_id
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
field1b
x0
x1
(
field1b
x0
x2
x3
)
=
field1b
x0
(
field1b
x0
x1
x2
)
x3
(proof)
Theorem
CRing_with_id_plus_com
CRing_with_id_plus_com
:
∀ x0 .
CRing_with_id
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field1b
x0
x1
x2
=
field1b
x0
x2
x1
(proof)
Theorem
CRing_with_id_zero_L
CRing_with_id_zero_L
:
∀ x0 .
CRing_with_id
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
field1b
x0
(
field3
x0
)
x1
=
x1
(proof)
Theorem
CRing_with_id_plus_inv
CRing_with_id_plus_inv
:
∀ x0 .
CRing_with_id
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
field0
x0
)
(
field1b
x0
x1
x3
=
field3
x0
)
⟶
x2
)
⟶
x2
(proof)
Theorem
CRing_with_id_mult_assoc
CRing_with_id_mult_assoc
:
∀ x0 .
CRing_with_id
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
field2b
x0
x1
(
field2b
x0
x2
x3
)
=
field2b
x0
(
field2b
x0
x1
x2
)
x3
(proof)
Theorem
CRing_with_id_mult_com
CRing_with_id_mult_com
:
∀ x0 .
CRing_with_id
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field2b
x0
x1
x2
=
field2b
x0
x2
x1
(proof)
Theorem
CRing_with_id_one_neq_zero
CRing_with_id_one_neq_zero
:
∀ x0 .
CRing_with_id
x0
⟶
field4
x0
=
field3
x0
⟶
∀ x1 : ο .
x1
(proof)
Theorem
CRing_with_id_one_L
CRing_with_id_one_L
:
∀ x0 .
CRing_with_id
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
field2b
x0
(
field4
x0
)
x1
=
x1
(proof)
Theorem
CRing_with_id_distr_L
CRing_with_id_distr_L
:
∀ x0 .
CRing_with_id
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
field2b
x0
x1
(
field1b
x0
x2
x3
)
=
field1b
x0
(
field2b
x0
x1
x2
)
(
field2b
x0
x1
x3
)
(proof)
Param
nat_primrec
nat_primrec
:
ι
→
(
ι
→
ι
→
ι
) →
ι
→
ι
Definition
CRing_with_id_omega_exp
CRing_with_id_omega_exp
:=
λ x0 x1 .
nat_primrec
(
field4
x0
)
(
λ x2 .
field2b
x0
x1
)
Known
nat_primrec_0
nat_primrec_0
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
nat_primrec
x0
x1
0
=
x0
Theorem
CRing_with_id_omega_exp_0
CRing_with_id_omega_exp_0
:
∀ x0 .
CRing_with_id
x0
⟶
∀ x1 .
CRing_with_id_omega_exp
x0
x1
0
=
field4
x0
(proof)
Param
omega
omega
:
ι
Param
nat_p
nat_p
:
ι
→
ο
Known
nat_primrec_S
nat_primrec_S
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
nat_p
x2
⟶
nat_primrec
x0
x1
(
ordsucc
x2
)
=
x1
x2
(
nat_primrec
x0
x1
x2
)
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Theorem
CRing_with_id_omega_exp_S
CRing_with_id_omega_exp_S
:
∀ x0 .
CRing_with_id
x0
⟶
∀ x1 x2 .
x2
∈
omega
⟶
CRing_with_id_omega_exp
x0
x1
(
ordsucc
x2
)
=
field2b
x0
x1
(
CRing_with_id_omega_exp
x0
x1
x2
)
(proof)
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
nat_0
nat_0
:
nat_p
0
Theorem
CRing_with_id_omega_exp_1
CRing_with_id_omega_exp_1
:
∀ x0 .
CRing_with_id
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
CRing_with_id_omega_exp
x0
x1
1
=
x1
(proof)
Known
nat_ind
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Theorem
CRing_with_id_omega_exp_clos
CRing_with_id_omega_exp_clos
:
∀ x0 .
CRing_with_id
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
omega
⟶
CRing_with_id_omega_exp
x0
x1
x2
∈
field0
x0
(proof)
Definition
CRing_with_id_eval_poly
CRing_with_id_eval_poly
:=
λ x0 x1 x2 x3 .
nat_primrec
(
field3
x0
)
(
λ x4 .
field1b
x0
(
field2b
x0
(
ap
x2
x4
)
(
CRing_with_id_omega_exp
x0
x3
x4
)
)
)
x1
Param
Pi
Pi
:
ι
→
(
ι
→
ι
) →
ι
Definition
setexp
setexp
:=
λ x0 x1 .
Pi
x1
(
λ x2 .
x0
)
Known
ap_Pi
ap_Pi
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
Pi
x0
x1
⟶
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
Known
ordsuccI2
ordsuccI2
:
∀ x0 .
x0
∈
ordsucc
x0
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Theorem
CRing_with_id_eval_poly_clos
CRing_with_id_eval_poly_clos
:
∀ x0 .
CRing_with_id
x0
⟶
∀ x1 .
x1
∈
omega
⟶
∀ x2 .
x2
∈
setexp
(
field0
x0
)
x1
⟶
∀ x3 .
x3
∈
field0
x0
⟶
CRing_with_id_eval_poly
x0
x1
x2
x3
∈
field0
x0
(proof)
Definition
field0
RealsStruct_carrier
:=
λ x0 .
ap
x0
0
Definition
field1b
RealsStruct_plus
:=
λ x0 .
decode_b
(
ap
x0
1
)
Definition
field2b
RealsStruct_mult
:=
λ x0 .
decode_b
(
ap
x0
2
)
Definition
field3
Field_zero
:=
λ x0 .
ap
x0
3
Definition
field4
RealsStruct_zero
:=
λ x0 .
ap
x0
4
Param
explicit_Field
explicit_Field
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ο
Definition
Field
Field
:=
λ x0 .
and
(
struct_b_b_e_e
x0
)
(
unpack_b_b_e_e_o
x0
(
λ x1 .
λ x2 x3 :
ι →
ι → ι
.
λ x4 x5 .
explicit_Field
x1
x4
x5
x2
x3
)
)
Theorem
Field_eta
Field_eta
:
∀ x0 .
Field
x0
⟶
x0
=
pack_b_b_e_e
(
field0
x0
)
(
field1b
x0
)
(
field2b
x0
)
(
field3
x0
)
(
field4
x0
)
(proof)
Known
Field_unpack_eq
Field_unpack_eq
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
unpack_b_b_e_e_o
(
pack_b_b_e_e
x0
x1
x2
x3
x4
)
(
λ x6 .
λ x7 x8 :
ι →
ι → ι
.
λ x9 x10 .
explicit_Field
x6
x9
x10
x7
x8
)
=
explicit_Field
x0
x3
x4
x1
x2
Theorem
Field_explicit_Field
Field_explicit_Field
:
∀ x0 .
Field
x0
⟶
explicit_Field
(
field0
x0
)
(
field3
x0
)
(
field4
x0
)
(
field1b
x0
)
(
field2b
x0
)
(proof)
Theorem
Field_zero_In
Field_zero_In
:
∀ x0 .
Field
x0
⟶
field3
x0
∈
field0
x0
(proof)
Theorem
Field_one_In
Field_one_In
:
∀ x0 .
Field
x0
⟶
field4
x0
∈
field0
x0
(proof)
Theorem
Field_plus_clos
Field_plus_clos
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field1b
x0
x1
x2
∈
field0
x0
(proof)
Theorem
Field_mult_clos
Field_mult_clos
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field2b
x0
x1
x2
∈
field0
x0
(proof)
Known
explicit_Field_E
explicit_Field_E
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 : ο .
(
explicit_Field
x0
x1
x2
x3
x4
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x6
x7
∈
x0
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x3
x6
(
x3
x7
x8
)
=
x3
(
x3
x6
x7
)
x8
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x6
x7
=
x3
x7
x6
)
⟶
x1
∈
x0
⟶
(
∀ x6 .
x6
∈
x0
⟶
x3
x1
x6
=
x6
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
x8
∈
x0
)
(
x3
x6
x8
=
x1
)
⟶
x7
)
⟶
x7
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x6
x7
∈
x0
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x4
x6
(
x4
x7
x8
)
=
x4
(
x4
x6
x7
)
x8
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x6
x7
=
x4
x7
x6
)
⟶
x2
∈
x0
⟶
(
x2
=
x1
⟶
∀ x6 : ο .
x6
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
x4
x2
x6
=
x6
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
(
x6
=
x1
⟶
∀ x7 : ο .
x7
)
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
x8
∈
x0
)
(
x4
x6
x8
=
x2
)
⟶
x7
)
⟶
x7
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x4
x6
(
x3
x7
x8
)
=
x3
(
x4
x6
x7
)
(
x4
x6
x8
)
)
⟶
x5
)
⟶
explicit_Field
x0
x1
x2
x3
x4
⟶
x5
Theorem
Field_plus_assoc
Field_plus_assoc
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
field1b
x0
x1
(
field1b
x0
x2
x3
)
=
field1b
x0
(
field1b
x0
x1
x2
)
x3
(proof)
Theorem
Field_plus_com
Field_plus_com
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field1b
x0
x1
x2
=
field1b
x0
x2
x1
(proof)
Theorem
Field_zero_L
Field_zero_L
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
field1b
x0
(
field3
x0
)
x1
=
x1
(proof)
Theorem
Field_plus_inv
Field_plus_inv
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
field0
x0
)
(
field1b
x0
x1
x3
=
field3
x0
)
⟶
x2
)
⟶
x2
(proof)
Theorem
Field_mult_assoc
Field_mult_assoc
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
field2b
x0
x1
(
field2b
x0
x2
x3
)
=
field2b
x0
(
field2b
x0
x1
x2
)
x3
(proof)
Theorem
Field_mult_com
Field_mult_com
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field2b
x0
x1
x2
=
field2b
x0
x2
x1
(proof)
Theorem
Field_one_neq_zero
Field_one_neq_zero
:
∀ x0 .
Field
x0
⟶
field4
x0
=
field3
x0
⟶
∀ x1 : ο .
x1
(proof)
Theorem
Field_one_L
Field_one_L
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
field2b
x0
(
field4
x0
)
x1
=
x1
(proof)
Theorem
Field_mult_inv_L
Field_mult_inv_L
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
(
x1
=
field3
x0
⟶
∀ x2 : ο .
x2
)
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
field0
x0
)
(
field2b
x0
x1
x3
=
field4
x0
)
⟶
x2
)
⟶
x2
(proof)
Theorem
Field_distr_L
Field_distr_L
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
field2b
x0
x1
(
field1b
x0
x2
x3
)
=
field1b
x0
(
field2b
x0
x1
x2
)
(
field2b
x0
x1
x3
)
(proof)
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Definition
Field_div
Field_div
:=
λ x0 x1 x2 .
If_i
(
and
(
x1
∈
field0
x0
)
(
x2
∈
setminus
(
field0
x0
)
(
Sing
(
field3
x0
)
)
)
)
(
prim0
(
λ x3 .
and
(
x3
∈
field0
x0
)
(
x1
=
field2b
x0
x2
x3
)
)
)
0
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Known
If_i_1
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Known
Eps_i_ex
Eps_i_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
x0
(
prim0
x0
)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Theorem
Field_div_prop
Field_div_prop
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
setminus
(
field0
x0
)
(
Sing
(
field3
x0
)
)
⟶
and
(
Field_div
x0
x1
x2
∈
field0
x0
)
(
x1
=
field2b
x0
x2
(
Field_div
x0
x1
x2
)
)
(proof)
Theorem
Field_div_clos
Field_div_clos
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
setminus
(
field0
x0
)
(
Sing
(
field3
x0
)
)
⟶
Field_div
x0
x1
x2
∈
field0
x0
(proof)
Theorem
Field_mult_div
Field_mult_div
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
setminus
(
field0
x0
)
(
Sing
(
field3
x0
)
)
⟶
x1
=
field2b
x0
x2
(
Field_div
x0
x1
x2
)
(proof)
Known
If_i_0
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Theorem
Field_div_undef1
Field_div_undef1
:
∀ x0 .
Field
x0
⟶
∀ x1 x2 .
nIn
x1
(
field0
x0
)
⟶
Field_div
x0
x1
x2
=
0
(proof)
Theorem
Field_div_undef2
Field_div_undef2
:
∀ x0 .
Field
x0
⟶
∀ x1 x2 .
nIn
x2
(
field0
x0
)
⟶
Field_div
x0
x1
x2
=
0
(proof)
Theorem
Field_div_undef3
Field_div_undef3
:
∀ x0 .
Field
x0
⟶
∀ x1 .
Field_div
x0
x1
(
field3
x0
)
=
0
(proof)
Known
Field_is_CRing_with_id
Field_is_CRing_with_id
:
∀ x0 .
Field
x0
⟶
CRing_with_id
x0
Theorem
Field_omega_exp_0
Field_omega_exp_0
:
∀ x0 .
Field
x0
⟶
∀ x1 .
CRing_with_id_omega_exp
x0
x1
0
=
field4
x0
(proof)
Theorem
Field_omega_exp_S
Field_omega_exp_S
:
∀ x0 .
Field
x0
⟶
∀ x1 x2 .
x2
∈
omega
⟶
CRing_with_id_omega_exp
x0
x1
(
ordsucc
x2
)
=
field2b
x0
x1
(
CRing_with_id_omega_exp
x0
x1
x2
)
(proof)
Theorem
Field_omega_exp_1
Field_omega_exp_1
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
CRing_with_id_omega_exp
x0
x1
1
=
x1
(proof)
Theorem
Field_omega_exp_clos
Field_omega_exp_clos
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
omega
⟶
CRing_with_id_omega_exp
x0
x1
x2
∈
field0
x0
(proof)
Theorem
Field_eval_poly_clos
Field_eval_poly_clos
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
omega
⟶
∀ x2 .
x2
∈
setexp
(
field0
x0
)
x1
⟶
∀ x3 .
x3
∈
field0
x0
⟶
CRing_with_id_eval_poly
x0
x1
x2
x3
∈
field0
x0
(proof)
Param
RealsStruct
RealsStruct
:
ι
→
ο
Param
Field_of_RealsStruct
Field_of_RealsStruct
:
ι
→
ι
Known
Field_Field_of_RealsStruct
Field_Field_of_RealsStruct
:
∀ x0 .
RealsStruct
x0
⟶
Field
(
Field_of_RealsStruct
x0
)
Theorem
Field_of_RealsStruct_is_CRing_with_id
Field_of_RealsStruct_is_CRing_with_id
:
∀ x0 .
RealsStruct
x0
⟶
CRing_with_id
(
Field_of_RealsStruct
x0
)
(proof)
Param
RealsStruct_leq
RealsStruct_leq
:
ι
→
ι
→
ι
→
ο
Definition
RealsStruct_lt
RealsStruct_lt
:=
λ x0 x1 x2 .
and
(
RealsStruct_leq
x0
x1
x2
)
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
Theorem
RealsStruct_lt_leq
RealsStruct_lt_leq
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
RealsStruct_lt
x0
x1
x2
⟶
RealsStruct_leq
x0
x1
x2
(proof)
Theorem
RealsStruct_lt_irref
RealsStruct_lt_irref
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
not
(
RealsStruct_lt
x0
x1
x1
)
(proof)
Known
RealsStruct_leq_antisym
RealsStruct_leq_antisym
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
RealsStruct_leq
x0
x1
x2
⟶
RealsStruct_leq
x0
x2
x1
⟶
x1
=
x2
Theorem
RealsStruct_lt_leq_asym
RealsStruct_lt_leq_asym
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
RealsStruct_lt
x0
x1
x2
⟶
not
(
RealsStruct_leq
x0
x2
x1
)
(proof)
Theorem
RealsStruct_leq_lt_asym
RealsStruct_leq_lt_asym
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
RealsStruct_leq
x0
x1
x2
⟶
not
(
RealsStruct_lt
x0
x2
x1
)
(proof)
Theorem
RealsStruct_lt_asym
RealsStruct_lt_asym
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
RealsStruct_lt
x0
x1
x2
⟶
not
(
RealsStruct_lt
x0
x2
x1
)
(proof)
Known
RealsStruct_leq_tra
RealsStruct_leq_tra
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
RealsStruct_leq
x0
x1
x2
⟶
RealsStruct_leq
x0
x2
x3
⟶
RealsStruct_leq
x0
x1
x3
Theorem
RealsStruct_lt_leq_tra
RealsStruct_lt_leq_tra
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
RealsStruct_lt
x0
x1
x2
⟶
RealsStruct_leq
x0
x2
x3
⟶
RealsStruct_lt
x0
x1
x3
(proof)
Theorem
RealsStruct_leq_lt_tra
RealsStruct_leq_lt_tra
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
RealsStruct_leq
x0
x1
x2
⟶
RealsStruct_lt
x0
x2
x3
⟶
RealsStruct_lt
x0
x1
x3
(proof)
Theorem
RealsStruct_lt_tra
RealsStruct_lt_tra
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
RealsStruct_lt
x0
x1
x2
⟶
RealsStruct_lt
x0
x2
x3
⟶
RealsStruct_lt
x0
x1
x3
(proof)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
RealsStruct_leq_linear
RealsStruct_leq_linear
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
or
(
RealsStruct_leq
x0
x1
x2
)
(
RealsStruct_leq
x0
x2
x1
)
Known
neq_i_sym
neq_i_sym
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
x1
=
x0
⟶
∀ x2 : ο .
x2
Theorem
RealsStruct_lt_trich_impred
RealsStruct_lt_trich_impred
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 : ο .
(
RealsStruct_lt
x0
x1
x2
⟶
x3
)
⟶
(
x1
=
x2
⟶
x3
)
⟶
(
RealsStruct_lt
x0
x2
x1
⟶
x3
)
⟶
x3
(proof)
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Theorem
RealsStruct_lt_trich
RealsStruct_lt_trich
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
or
(
or
(
RealsStruct_lt
x0
x1
x2
)
(
x1
=
x2
)
)
(
RealsStruct_lt
x0
x2
x1
)
(proof)
Known
RealsStruct_leq_refl
RealsStruct_leq_refl
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
RealsStruct_leq
x0
x1
x1
Theorem
RealsStruct_leq_lt_linear
RealsStruct_leq_lt_linear
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
or
(
RealsStruct_leq
x0
x1
x2
)
(
RealsStruct_lt
x0
x2
x1
)
(proof)
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Param
natOfOrderedField_p
natOfOrderedField_p
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
ι
→
ο
Param
RealsStruct_one
RealsStruct_one
:
ι
→
ι
Definition
RealsStruct_N
RealsStruct_N
:=
λ x0 .
Sep
(
field0
x0
)
(
natOfOrderedField_p
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
(
RealsStruct_leq
x0
)
)
Param
explicit_Reals
explicit_Reals
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
ο
Param
explicit_OrderedField
explicit_OrderedField
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
ο
Definition
lt
lt
:=
λ x0 x1 x2 .
λ x3 x4 :
ι →
ι → ι
.
λ x5 :
ι →
ι → ο
.
λ x6 x7 .
and
(
x5
x6
x7
)
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
Known
explicit_Reals_E
explicit_Reals_E
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 : ο .
(
explicit_Reals
x0
x1
x2
x3
x4
x5
⟶
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
lt
x0
x1
x2
x3
x4
x5
x1
x7
⟶
x5
x1
x8
⟶
∀ x9 : ο .
(
∀ x10 .
and
(
x10
∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
(
x5
x8
(
x4
x10
x7
)
)
⟶
x9
)
⟶
x9
)
⟶
(
∀ x7 .
x7
∈
setexp
x0
(
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
⟶
∀ x8 .
x8
∈
setexp
x0
(
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
⟶
(
∀ x9 .
x9
∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
⟶
and
(
and
(
x5
(
ap
x7
x9
)
(
ap
x8
x9
)
)
(
x5
(
ap
x7
x9
)
(
ap
x7
(
x3
x9
x2
)
)
)
)
(
x5
(
ap
x8
(
x3
x9
x2
)
)
(
ap
x8
x9
)
)
)
⟶
∀ x9 : ο .
(
∀ x10 .
and
(
x10
∈
x0
)
(
∀ x11 .
x11
∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
⟶
and
(
x5
(
ap
x7
x11
)
x10
)
(
x5
x10
(
ap
x8
x11
)
)
)
⟶
x9
)
⟶
x9
)
⟶
x6
)
⟶
explicit_Reals
x0
x1
x2
x3
x4
x5
⟶
x6
Known
RealsStruct_explicit_Reals
RealsStruct_explicit_Reals
:
∀ x0 .
RealsStruct
x0
⟶
explicit_Reals
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
(
RealsStruct_leq
x0
)
Theorem
RealsStruct_Arch
RealsStruct_Arch
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
RealsStruct_lt
x0
(
field4
x0
)
x1
⟶
RealsStruct_leq
x0
(
field4
x0
)
x2
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
RealsStruct_N
x0
)
(
RealsStruct_leq
x0
x2
(
field2b
x0
x4
x1
)
)
⟶
x3
)
⟶
x3
(proof)
Known
Field_of_RealsStruct_0
Field_of_RealsStruct_0
:
∀ x0 .
ap
(
Field_of_RealsStruct
x0
)
0
=
field0
x0
Known
Field_of_RealsStruct_2f
Field_of_RealsStruct_2f
:
∀ x0 .
RealsStruct
x0
⟶
(
λ x2 .
ap
(
ap
(
ap
(
Field_of_RealsStruct
x0
)
2
)
x2
)
)
=
field2b
x0
Known
Field_of_RealsStruct_3
Field_of_RealsStruct_3
:
∀ x0 .
ap
(
Field_of_RealsStruct
x0
)
3
=
field4
x0
Theorem
241a7..
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
setminus
(
field0
x0
)
(
Sing
(
field4
x0
)
)
⟶
and
(
Field_div
(
Field_of_RealsStruct
x0
)
x1
x2
∈
field0
x0
)
(
x1
=
field2b
x0
x2
(
Field_div
(
Field_of_RealsStruct
x0
)
x1
x2
)
)
(proof)
Theorem
RealsStruct_div_clos
RealsStruct_div_clos
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
setminus
(
field0
x0
)
(
Sing
(
field4
x0
)
)
⟶
Field_div
(
Field_of_RealsStruct
x0
)
x1
x2
∈
field0
x0
(proof)
Theorem
RealsStruct_mult_div
RealsStruct_mult_div
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
setminus
(
field0
x0
)
(
Sing
(
field4
x0
)
)
⟶
x1
=
field2b
x0
x2
(
Field_div
(
Field_of_RealsStruct
x0
)
x1
x2
)
(proof)
Theorem
RealsStruct_div_undef1
RealsStruct_div_undef1
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 x2 .
nIn
x1
(
field0
x0
)
⟶
Field_div
(
Field_of_RealsStruct
x0
)
x1
x2
=
0
(proof)
Theorem
RealsStruct_div_undef2
RealsStruct_div_undef2
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 x2 .
nIn
x2
(
field0
x0
)
⟶
Field_div
(
Field_of_RealsStruct
x0
)
x1
x2
=
0
(proof)
Theorem
RealsStruct_div_undef3
RealsStruct_div_undef3
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
Field_div
(
Field_of_RealsStruct
x0
)
x1
(
field4
x0
)
=
0
(proof)
Known
Field_of_RealsStruct_4
Field_of_RealsStruct_4
:
∀ x0 .
ap
(
Field_of_RealsStruct
x0
)
4
=
RealsStruct_one
x0
Theorem
RealsStruct_omega_exp_0
RealsStruct_omega_exp_0
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
CRing_with_id_omega_exp
(
Field_of_RealsStruct
x0
)
x1
0
=
RealsStruct_one
x0
(proof)
Theorem
RealsStruct_omega_exp_S
RealsStruct_omega_exp_S
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 x2 .
x2
∈
omega
⟶
CRing_with_id_omega_exp
(
Field_of_RealsStruct
x0
)
x1
(
ordsucc
x2
)
=
field2b
x0
x1
(
CRing_with_id_omega_exp
(
Field_of_RealsStruct
x0
)
x1
x2
)
(proof)
Theorem
RealsStruct_omega_exp_1
RealsStruct_omega_exp_1
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
CRing_with_id_omega_exp
(
Field_of_RealsStruct
x0
)
x1
1
=
x1
(proof)
Theorem
RealsStruct_omega_exp_clos
RealsStruct_omega_exp_clos
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
omega
⟶
CRing_with_id_omega_exp
(
Field_of_RealsStruct
x0
)
x1
x2
∈
field0
x0
(proof)
Param
RealsStruct_Npos
RealsStruct_Npos
:
ι
→
ι
Definition
RealsStruct_divides
RealsStruct_divides
:=
λ x0 x1 x2 .
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
RealsStruct_Npos
x0
)
(
field2b
x0
x1
x4
=
x2
)
⟶
x3
)
⟶
x3
Definition
RealsStruct_Primes
RealsStruct_Primes
:=
λ x0 .
{x1 ∈
RealsStruct_N
x0
|
and
(
RealsStruct_lt
x0
(
RealsStruct_one
x0
)
x1
)
(
∀ x2 .
x2
∈
RealsStruct_Npos
x0
⟶
RealsStruct_divides
x0
x2
x1
⟶
or
(
x2
=
RealsStruct_one
x0
)
(
x2
=
x1
)
)
}
Definition
RealsStruct_coprime
RealsStruct_coprime
:=
λ x0 x1 x2 .
∀ x3 .
x3
∈
RealsStruct_Npos
x0
⟶
RealsStruct_divides
x0
x3
x1
⟶
RealsStruct_divides
x0
x3
x2
⟶
x3
=
RealsStruct_one
x0
Param
Field_minus
Field_minus
:
ι
→
ι
→
ι
Definition
RealsStruct_abs
RealsStruct_abs
:=
λ x0 x1 .
If_i
(
RealsStruct_leq
x0
(
field4
x0
)
x1
)
x1
(
Field_minus
(
Field_of_RealsStruct
x0
)
x1
)
Known
RealsStruct_minus_clos
RealsStruct_minus_clos
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
Field_minus
(
Field_of_RealsStruct
x0
)
x1
∈
field0
x0
Theorem
RealsStruct_abs_clos
RealsStruct_abs_clos
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
RealsStruct_abs
x0
x1
∈
field0
x0
(proof)
Theorem
RealsStruct_abs_nonneg_case
RealsStruct_abs_nonneg_case
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
RealsStruct_leq
x0
(
field4
x0
)
x1
⟶
RealsStruct_abs
x0
x1
=
x1
(proof)
Known
RealsStruct_zero_In
RealsStruct_zero_In
:
∀ x0 .
RealsStruct
x0
⟶
field4
x0
∈
field0
x0
Theorem
RealsStruct_abs_neg_case
RealsStruct_abs_neg_case
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
RealsStruct_lt
x0
x1
(
field4
x0
)
⟶
RealsStruct_abs
x0
x1
=
Field_minus
(
Field_of_RealsStruct
x0
)
x1
(proof)
Known
RealsStruct_minus_zero
RealsStruct_minus_zero
:
∀ x0 .
RealsStruct
x0
⟶
Field_minus
(
Field_of_RealsStruct
x0
)
(
field4
x0
)
=
field4
x0
Known
RealsStruct_minus_leq
RealsStruct_minus_leq
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
RealsStruct_leq
x0
x1
x2
⟶
RealsStruct_leq
x0
(
Field_minus
(
Field_of_RealsStruct
x0
)
x2
)
(
Field_minus
(
Field_of_RealsStruct
x0
)
x1
)
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Theorem
RealsStruct_abs_nonneg
RealsStruct_abs_nonneg
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
RealsStruct_leq
x0
(
field4
x0
)
(
RealsStruct_abs
x0
x1
)
(proof)
Known
RealsStruct_minus_invol
RealsStruct_minus_invol
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
Field_minus
(
Field_of_RealsStruct
x0
)
(
Field_minus
(
Field_of_RealsStruct
x0
)
x1
)
=
x1
Theorem
RealsStruct_abs_zero_inv
RealsStruct_abs_zero_inv
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
RealsStruct_abs
x0
x1
=
field4
x0
⟶
x1
=
field4
x0
(proof)
Known
RealsStruct_plus_cancelR
RealsStruct_plus_cancelR
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
field1b
x0
x1
x3
=
field1b
x0
x2
x3
⟶
x1
=
x2
Known
RealsStruct_minus_R
RealsStruct_minus_R
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
field1b
x0
x1
(
Field_minus
(
Field_of_RealsStruct
x0
)
x1
)
=
field4
x0
Known
RealsStruct_plus_clos
RealsStruct_plus_clos
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field1b
x0
x1
x2
∈
field0
x0
Theorem
RealsStruct_dist_zero_eq
RealsStruct_dist_zero_eq
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
RealsStruct_abs
x0
(
field1b
x0
x1
(
Field_minus
(
Field_of_RealsStruct
x0
)
x2
)
)
=
field4
x0
⟶
x1
=
x2
(proof)
previous assets