Search for blocks/addresses/...

Proofgold Address

address
PUMpo2jyGq1Cx9p9SnHvx8EuhiM5prWz4da
total
0
mg
-
conjpub
-
current assets
936b9../02ad9.. bday: 5881 doc published by Pr6Pc..
Param struct_b_b_e_estruct_b_b_e_e : ιο
Param pack_b_b_e_epack_b_b_e_e : ι(ιιι) → (ιιι) → ιιι
Param apap : ιιι
Definition decode_bdecode_b := λ x0 x1 . ap (ap x0 x1)
Param ordsuccordsucc : ιι
Known struct_b_b_e_e_eta : ∀ x0 . struct_b_b_e_e x0x0 = pack_b_b_e_e (ap x0 0) (decode_b (ap x0 1)) (decode_b (ap x0 2)) (ap x0 3) (ap x0 4)
Known pack_struct_b_b_e_e_E1 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 . struct_b_b_e_e (pack_b_b_e_e x0 x1 x2 x3 x4)∀ x5 . x5x0∀ x6 . x6x0x1 x5 x6x0
Known pack_struct_b_b_e_e_E2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 . struct_b_b_e_e (pack_b_b_e_e x0 x1 x2 x3 x4)∀ x5 . x5x0∀ x6 . x6x0x2 x5 x6x0
Known pack_struct_b_b_e_e_E3 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 . struct_b_b_e_e (pack_b_b_e_e x0 x1 x2 x3 x4)x3x0
Known pack_struct_b_b_e_e_E4 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 . struct_b_b_e_e (pack_b_b_e_e x0 x1 x2 x3 x4)x4x0
Definition field0RealsStruct_carrier := λ x0 . ap x0 0
Definition field1bRealsStruct_plus := λ x0 . decode_b (ap x0 1)
Definition field2bRealsStruct_mult := λ x0 . decode_b (ap x0 2)
Definition field3Field_zero := λ x0 . ap x0 3
Definition field4RealsStruct_zero := λ x0 . ap x0 4
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param unpack_b_b_e_e_ounpack_b_b_e_e_o : ι(ι(ιιι) → (ιιι) → ιιο) → ο
Param explicit_CRing_with_idexplicit_CRing : ιιι(ιιι) → (ιιι) → ο
Definition CRing_with_idCRing := λ x0 . and (struct_b_b_e_e x0) (unpack_b_b_e_e_o x0 (λ x1 . λ x2 x3 : ι → ι → ι . λ x4 x5 . explicit_CRing_with_id x1 x4 x5 x2 x3))
Theorem CRing_with_id_etaCRing_eta : ∀ x0 . CRing_with_id x0x0 = pack_b_b_e_e (field0 x0) (field1b x0) (field2b x0) (field3 x0) (field4 x0) (proof)
Known CRing_with_id_unpack_eqCRing_unpack_eq : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 . unpack_b_b_e_e_o (pack_b_b_e_e x0 x1 x2 x3 x4) (λ x6 . λ x7 x8 : ι → ι → ι . λ x9 x10 . explicit_CRing_with_id x6 x9 x10 x7 x8) = explicit_CRing_with_id x0 x3 x4 x1 x2
Theorem CRing_with_id_explicit_CRing_with_idCRing_explicit_CRing : ∀ x0 . CRing_with_id x0explicit_CRing_with_id (field0 x0) (field3 x0) (field4 x0) (field1b x0) (field2b x0) (proof)
Theorem CRing_with_id_zero_InCRing_zero_In : ∀ x0 . CRing_with_id x0field3 x0field0 x0 (proof)
Theorem CRing_with_id_one_InCRing_one_In : ∀ x0 . CRing_with_id x0field4 x0field0 x0 (proof)
Theorem CRing_with_id_plus_closCRing_plus_clos : ∀ x0 . CRing_with_id x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0field1b x0 x1 x2field0 x0 (proof)
Theorem CRing_with_id_mult_closCRing_mult_clos : ∀ x0 . CRing_with_id x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0field2b x0 x1 x2field0 x0 (proof)
Known explicit_CRing_with_id_Eexplicit_CRing_E : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ο . (explicit_CRing_with_id x0 x1 x2 x3 x4(∀ x6 . x6x0∀ x7 . x7x0x3 x6 x7x0)(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x3 x6 (x3 x7 x8) = x3 (x3 x6 x7) x8)(∀ x6 . x6x0∀ x7 . x7x0x3 x6 x7 = x3 x7 x6)x1x0(∀ x6 . x6x0x3 x1 x6 = x6)(∀ x6 . x6x0∀ x7 : ο . (∀ x8 . and (x8x0) (x3 x6 x8 = x1)x7)x7)(∀ x6 . x6x0∀ x7 . x7x0x4 x6 x7x0)(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x4 x6 (x4 x7 x8) = x4 (x4 x6 x7) x8)(∀ x6 . x6x0∀ x7 . x7x0x4 x6 x7 = x4 x7 x6)x2x0(x2 = x1∀ x6 : ο . x6)(∀ x6 . x6x0x4 x2 x6 = x6)(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x4 x6 (x3 x7 x8) = x3 (x4 x6 x7) (x4 x6 x8))x5)explicit_CRing_with_id x0 x1 x2 x3 x4x5
Theorem CRing_with_id_plus_assocCRing_plus_assoc : ∀ x0 . CRing_with_id x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0∀ x3 . x3field0 x0field1b x0 x1 (field1b x0 x2 x3) = field1b x0 (field1b x0 x1 x2) x3 (proof)
Theorem CRing_with_id_plus_comCRing_plus_com : ∀ x0 . CRing_with_id x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0field1b x0 x1 x2 = field1b x0 x2 x1 (proof)
Theorem CRing_with_id_zero_LCRing_zero_L : ∀ x0 . CRing_with_id x0∀ x1 . x1field0 x0field1b x0 (field3 x0) x1 = x1 (proof)
Theorem CRing_with_id_plus_invCRing_plus_inv : ∀ x0 . CRing_with_id x0∀ x1 . x1field0 x0∀ x2 : ο . (∀ x3 . and (x3field0 x0) (field1b x0 x1 x3 = field3 x0)x2)x2 (proof)
Theorem CRing_with_id_mult_assocCRing_mult_assoc : ∀ x0 . CRing_with_id x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0∀ x3 . x3field0 x0field2b x0 x1 (field2b x0 x2 x3) = field2b x0 (field2b x0 x1 x2) x3 (proof)
Theorem CRing_with_id_mult_comCRing_mult_com : ∀ x0 . CRing_with_id x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0field2b x0 x1 x2 = field2b x0 x2 x1 (proof)
Theorem CRing_with_id_one_neq_zeroCRing_one_neq_zero : ∀ x0 . CRing_with_id x0field4 x0 = field3 x0∀ x1 : ο . x1 (proof)
Theorem CRing_with_id_one_LCRing_one_L : ∀ x0 . CRing_with_id x0∀ x1 . x1field0 x0field2b x0 (field4 x0) x1 = x1 (proof)
Theorem CRing_with_id_distr_LCRing_distr_L : ∀ x0 . CRing_with_id x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0∀ x3 . x3field0 x0field2b x0 x1 (field1b x0 x2 x3) = field1b x0 (field2b x0 x1 x2) (field2b x0 x1 x3) (proof)
Param nat_primrecnat_primrec : ι(ιιι) → ιι
Definition CRing_with_id_omega_expCRing_omega_exp := λ x0 x1 . nat_primrec (field4 x0) (λ x2 . field2b x0 x1)
Known nat_primrec_0nat_primrec_0 : ∀ x0 . ∀ x1 : ι → ι → ι . nat_primrec x0 x1 0 = x0
Theorem CRing_with_id_omega_exp_0CRing_omega_exp_0 : ∀ x0 . CRing_with_id x0∀ x1 . CRing_with_id_omega_exp x0 x1 0 = field4 x0 (proof)
Param omegaomega : ι
Param nat_pnat_p : ιο
Known nat_primrec_Snat_primrec_S : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 . nat_p x2nat_primrec x0 x1 (ordsucc x2) = x1 x2 (nat_primrec x0 x1 x2)
Known omega_nat_pomega_nat_p : ∀ x0 . x0omeganat_p x0
Theorem CRing_with_id_omega_exp_SCRing_omega_exp_S : ∀ x0 . CRing_with_id x0∀ x1 x2 . x2omegaCRing_with_id_omega_exp x0 x1 (ordsucc x2) = field2b x0 x1 (CRing_with_id_omega_exp x0 x1 x2) (proof)
Known nat_p_omeganat_p_omega : ∀ x0 . nat_p x0x0omega
Known nat_0nat_0 : nat_p 0
Theorem CRing_with_id_omega_exp_1CRing_omega_exp_1 : ∀ x0 . CRing_with_id x0∀ x1 . x1field0 x0CRing_with_id_omega_exp x0 x1 1 = x1 (proof)
Known nat_indnat_ind : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1
Theorem CRing_with_id_omega_exp_closCRing_omega_exp_clos : ∀ x0 . CRing_with_id x0∀ x1 . x1field0 x0∀ x2 . x2omegaCRing_with_id_omega_exp x0 x1 x2field0 x0 (proof)
Definition CRing_with_id_eval_polyCRing_eval_poly := λ x0 x1 x2 x3 . nat_primrec (field3 x0) (λ x4 . field1b x0 (field2b x0 (ap x2 x4) (CRing_with_id_omega_exp x0 x3 x4))) x1
Param PiPi : ι(ιι) → ι
Definition setexpsetexp := λ x0 x1 . Pi x1 (λ x2 . x0)
Known ap_Piap_Pi : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2Pi x0 x1x3x0ap x2 x3x1 x3
Known ordsuccI2ordsuccI2 : ∀ x0 . x0ordsucc x0
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Known ordsuccI1ordsuccI1 : ∀ x0 . x0ordsucc x0
Theorem CRing_with_id_eval_poly_closCRing_eval_poly_clos : ∀ x0 . CRing_with_id x0∀ x1 . x1omega∀ x2 . x2setexp (field0 x0) x1∀ x3 . x3field0 x0CRing_with_id_eval_poly x0 x1 x2 x3field0 x0 (proof)
Definition field0RealsStruct_carrier := λ x0 . ap x0 0
Definition field1bRealsStruct_plus := λ x0 . decode_b (ap x0 1)
Definition field2bRealsStruct_mult := λ x0 . decode_b (ap x0 2)
Definition field3Field_zero := λ x0 . ap x0 3
Definition field4RealsStruct_zero := λ x0 . ap x0 4
Param explicit_Fieldexplicit_Field : ιιι(ιιι) → (ιιι) → ο
Definition FieldField := λ x0 . and (struct_b_b_e_e x0) (unpack_b_b_e_e_o x0 (λ x1 . λ x2 x3 : ι → ι → ι . λ x4 x5 . explicit_Field x1 x4 x5 x2 x3))
Theorem Field_etaField_eta : ∀ x0 . Field x0x0 = pack_b_b_e_e (field0 x0) (field1b x0) (field2b x0) (field3 x0) (field4 x0) (proof)
Known Field_unpack_eqField_unpack_eq : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 . unpack_b_b_e_e_o (pack_b_b_e_e x0 x1 x2 x3 x4) (λ x6 . λ x7 x8 : ι → ι → ι . λ x9 x10 . explicit_Field x6 x9 x10 x7 x8) = explicit_Field x0 x3 x4 x1 x2
Theorem Field_explicit_FieldField_explicit_Field : ∀ x0 . Field x0explicit_Field (field0 x0) (field3 x0) (field4 x0) (field1b x0) (field2b x0) (proof)
Theorem Field_zero_InField_zero_In : ∀ x0 . Field x0field3 x0field0 x0 (proof)
Theorem Field_one_InField_one_In : ∀ x0 . Field x0field4 x0field0 x0 (proof)
Theorem Field_plus_closField_plus_clos : ∀ x0 . Field x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0field1b x0 x1 x2field0 x0 (proof)
Theorem Field_mult_closField_mult_clos : ∀ x0 . Field x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0field2b x0 x1 x2field0 x0 (proof)
Known explicit_Field_Eexplicit_Field_E : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ο . (explicit_Field x0 x1 x2 x3 x4(∀ x6 . x6x0∀ x7 . x7x0x3 x6 x7x0)(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x3 x6 (x3 x7 x8) = x3 (x3 x6 x7) x8)(∀ x6 . x6x0∀ x7 . x7x0x3 x6 x7 = x3 x7 x6)x1x0(∀ x6 . x6x0x3 x1 x6 = x6)(∀ x6 . x6x0∀ x7 : ο . (∀ x8 . and (x8x0) (x3 x6 x8 = x1)x7)x7)(∀ x6 . x6x0∀ x7 . x7x0x4 x6 x7x0)(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x4 x6 (x4 x7 x8) = x4 (x4 x6 x7) x8)(∀ x6 . x6x0∀ x7 . x7x0x4 x6 x7 = x4 x7 x6)x2x0(x2 = x1∀ x6 : ο . x6)(∀ x6 . x6x0x4 x2 x6 = x6)(∀ x6 . x6x0(x6 = x1∀ x7 : ο . x7)∀ x7 : ο . (∀ x8 . and (x8x0) (x4 x6 x8 = x2)x7)x7)(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x4 x6 (x3 x7 x8) = x3 (x4 x6 x7) (x4 x6 x8))x5)explicit_Field x0 x1 x2 x3 x4x5
Theorem Field_plus_assocField_plus_assoc : ∀ x0 . Field x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0∀ x3 . x3field0 x0field1b x0 x1 (field1b x0 x2 x3) = field1b x0 (field1b x0 x1 x2) x3 (proof)
Theorem Field_plus_comField_plus_com : ∀ x0 . Field x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0field1b x0 x1 x2 = field1b x0 x2 x1 (proof)
Theorem Field_zero_LField_zero_L : ∀ x0 . Field x0∀ x1 . x1field0 x0field1b x0 (field3 x0) x1 = x1 (proof)
Theorem Field_plus_invField_plus_inv : ∀ x0 . Field x0∀ x1 . x1field0 x0∀ x2 : ο . (∀ x3 . and (x3field0 x0) (field1b x0 x1 x3 = field3 x0)x2)x2 (proof)
Theorem Field_mult_assocField_mult_assoc : ∀ x0 . Field x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0∀ x3 . x3field0 x0field2b x0 x1 (field2b x0 x2 x3) = field2b x0 (field2b x0 x1 x2) x3 (proof)
Theorem Field_mult_comField_mult_com : ∀ x0 . Field x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0field2b x0 x1 x2 = field2b x0 x2 x1 (proof)
Theorem Field_one_neq_zeroField_one_neq_zero : ∀ x0 . Field x0field4 x0 = field3 x0∀ x1 : ο . x1 (proof)
Theorem Field_one_LField_one_L : ∀ x0 . Field x0∀ x1 . x1field0 x0field2b x0 (field4 x0) x1 = x1 (proof)
Theorem Field_mult_inv_LField_mult_inv_L : ∀ x0 . Field x0∀ x1 . x1field0 x0(x1 = field3 x0∀ x2 : ο . x2)∀ x2 : ο . (∀ x3 . and (x3field0 x0) (field2b x0 x1 x3 = field4 x0)x2)x2 (proof)
Theorem Field_distr_LField_distr_L : ∀ x0 . Field x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0∀ x3 . x3field0 x0field2b x0 x1 (field1b x0 x2 x3) = field1b x0 (field2b x0 x1 x2) (field2b x0 x1 x3) (proof)
Param If_iIf_i : οιιι
Param setminussetminus : ιιι
Param SingSing : ιι
Definition Field_divField_div := λ x0 x1 x2 . If_i (and (x1field0 x0) (x2setminus (field0 x0) (Sing (field3 x0)))) (prim0 (λ x3 . and (x3field0 x0) (x1 = field2b x0 x2 x3))) 0
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Known setminusEsetminusE : ∀ x0 x1 x2 . x2setminus x0 x1and (x2x0) (nIn x2 x1)
Known If_i_1If_i_1 : ∀ x0 : ο . ∀ x1 x2 . x0If_i x0 x1 x2 = x1
Known Eps_i_exEps_i_ex : ∀ x0 : ι → ο . (∀ x1 : ο . (∀ x2 . x0 x2x1)x1)x0 (prim0 x0)
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known SingISingI : ∀ x0 . x0Sing x0
Theorem Field_div_propField_div_prop : ∀ x0 . Field x0∀ x1 . x1field0 x0∀ x2 . x2setminus (field0 x0) (Sing (field3 x0))and (Field_div x0 x1 x2field0 x0) (x1 = field2b x0 x2 (Field_div x0 x1 x2)) (proof)
Theorem Field_div_closField_div_clos : ∀ x0 . Field x0∀ x1 . x1field0 x0∀ x2 . x2setminus (field0 x0) (Sing (field3 x0))Field_div x0 x1 x2field0 x0 (proof)
Theorem Field_mult_divField_mult_div : ∀ x0 . Field x0∀ x1 . x1field0 x0∀ x2 . x2setminus (field0 x0) (Sing (field3 x0))x1 = field2b x0 x2 (Field_div x0 x1 x2) (proof)
Known If_i_0If_i_0 : ∀ x0 : ο . ∀ x1 x2 . not x0If_i x0 x1 x2 = x2
Theorem Field_div_undef1Field_div_undef1 : ∀ x0 . Field x0∀ x1 x2 . nIn x1 (field0 x0)Field_div x0 x1 x2 = 0 (proof)
Theorem Field_div_undef2Field_div_undef2 : ∀ x0 . Field x0∀ x1 x2 . nIn x2 (field0 x0)Field_div x0 x1 x2 = 0 (proof)
Theorem Field_div_undef3Field_div_undef3 : ∀ x0 . Field x0∀ x1 . Field_div x0 x1 (field3 x0) = 0 (proof)
Known Field_is_CRing_with_idField_is_CRing : ∀ x0 . Field x0CRing_with_id x0
Theorem Field_omega_exp_0Field_omega_exp_0 : ∀ x0 . Field x0∀ x1 . CRing_with_id_omega_exp x0 x1 0 = field4 x0 (proof)
Theorem Field_omega_exp_SField_omega_exp_S : ∀ x0 . Field x0∀ x1 x2 . x2omegaCRing_with_id_omega_exp x0 x1 (ordsucc x2) = field2b x0 x1 (CRing_with_id_omega_exp x0 x1 x2) (proof)
Theorem Field_omega_exp_1Field_omega_exp_1 : ∀ x0 . Field x0∀ x1 . x1field0 x0CRing_with_id_omega_exp x0 x1 1 = x1 (proof)
Theorem Field_omega_exp_closField_omega_exp_clos : ∀ x0 . Field x0∀ x1 . x1field0 x0∀ x2 . x2omegaCRing_with_id_omega_exp x0 x1 x2field0 x0 (proof)
Theorem Field_eval_poly_closField_eval_poly_clos : ∀ x0 . Field x0∀ x1 . x1omega∀ x2 . x2setexp (field0 x0) x1∀ x3 . x3field0 x0CRing_with_id_eval_poly x0 x1 x2 x3field0 x0 (proof)
Param RealsStructRealsStruct : ιο
Param Field_of_RealsStructField_of_RealsStruct : ιι
Known Field_Field_of_RealsStructField_Field_of_RealsStruct : ∀ x0 . RealsStruct x0Field (Field_of_RealsStruct x0)
Theorem Field_of_RealsStruct_is_CRing_with_idField_of_RealsStruct_is_CRing : ∀ x0 . RealsStruct x0CRing_with_id (Field_of_RealsStruct x0) (proof)
Param RealsStruct_leqRealsStruct_leq : ιιιο
Definition RealsStruct_ltRealsStruct_lt := λ x0 x1 x2 . and (RealsStruct_leq x0 x1 x2) (x1 = x2∀ x3 : ο . x3)
Theorem RealsStruct_lt_leqRealsStruct_lt_leq : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0RealsStruct_lt x0 x1 x2RealsStruct_leq x0 x1 x2 (proof)
Theorem RealsStruct_lt_irrefRealsStruct_lt_irref : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0not (RealsStruct_lt x0 x1 x1) (proof)
Known RealsStruct_leq_antisymRealsStruct_leq_antisym : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0RealsStruct_leq x0 x1 x2RealsStruct_leq x0 x2 x1x1 = x2
Theorem RealsStruct_lt_leq_asymRealsStruct_lt_leq_asym : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0RealsStruct_lt x0 x1 x2not (RealsStruct_leq x0 x2 x1) (proof)
Theorem RealsStruct_leq_lt_asymRealsStruct_leq_lt_asym : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0RealsStruct_leq x0 x1 x2not (RealsStruct_lt x0 x2 x1) (proof)
Theorem RealsStruct_lt_asymRealsStruct_lt_asym : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0RealsStruct_lt x0 x1 x2not (RealsStruct_lt x0 x2 x1) (proof)
Known RealsStruct_leq_traRealsStruct_leq_tra : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0∀ x3 . x3field0 x0RealsStruct_leq x0 x1 x2RealsStruct_leq x0 x2 x3RealsStruct_leq x0 x1 x3
Theorem RealsStruct_lt_leq_traRealsStruct_lt_leq_tra : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0∀ x3 . x3field0 x0RealsStruct_lt x0 x1 x2RealsStruct_leq x0 x2 x3RealsStruct_lt x0 x1 x3 (proof)
Theorem RealsStruct_leq_lt_traRealsStruct_leq_lt_tra : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0∀ x3 . x3field0 x0RealsStruct_leq x0 x1 x2RealsStruct_lt x0 x2 x3RealsStruct_lt x0 x1 x3 (proof)
Theorem RealsStruct_lt_traRealsStruct_lt_tra : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0∀ x3 . x3field0 x0RealsStruct_lt x0 x1 x2RealsStruct_lt x0 x2 x3RealsStruct_lt x0 x1 x3 (proof)
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known RealsStruct_leq_linearRealsStruct_leq_linear : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0or (RealsStruct_leq x0 x1 x2) (RealsStruct_leq x0 x2 x1)
Known neq_i_symneq_i_sym : ∀ x0 x1 . (x0 = x1∀ x2 : ο . x2)x1 = x0∀ x2 : ο . x2
Theorem RealsStruct_lt_trich_impredRealsStruct_lt_trich_impred : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0∀ x3 : ο . (RealsStruct_lt x0 x1 x2x3)(x1 = x2x3)(RealsStruct_lt x0 x2 x1x3)x3 (proof)
Known orILorIL : ∀ x0 x1 : ο . x0or x0 x1
Known orIRorIR : ∀ x0 x1 : ο . x1or x0 x1
Theorem RealsStruct_lt_trichRealsStruct_lt_trich : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0or (or (RealsStruct_lt x0 x1 x2) (x1 = x2)) (RealsStruct_lt x0 x2 x1) (proof)
Known RealsStruct_leq_reflRealsStruct_leq_refl : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0RealsStruct_leq x0 x1 x1
Theorem RealsStruct_leq_lt_linearRealsStruct_leq_lt_linear : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0or (RealsStruct_leq x0 x1 x2) (RealsStruct_lt x0 x2 x1) (proof)
Param SepSep : ι(ιο) → ι
Param natOfOrderedField_pnatOfOrderedField_p : ιιι(ιιι) → (ιιι) → (ιιο) → ιο
Param RealsStruct_oneRealsStruct_one : ιι
Definition RealsStruct_NRealsStruct_N := λ x0 . Sep (field0 x0) (natOfOrderedField_p (field0 x0) (field4 x0) (RealsStruct_one x0) (field1b x0) (field2b x0) (RealsStruct_leq x0))
Param explicit_Realsexplicit_Reals : ιιι(ιιι) → (ιιι) → (ιιο) → ο
Param explicit_OrderedFieldexplicit_OrderedField : ιιι(ιιι) → (ιιι) → (ιιο) → ο
Definition ltlt := λ x0 x1 x2 . λ x3 x4 : ι → ι → ι . λ x5 : ι → ι → ο . λ x6 x7 . and (x5 x6 x7) (x6 = x7∀ x8 : ο . x8)
Known explicit_Reals_Eexplicit_Reals_E : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ο . (explicit_Reals x0 x1 x2 x3 x4 x5explicit_OrderedField x0 x1 x2 x3 x4 x5(∀ x7 . x7x0∀ x8 . x8x0lt x0 x1 x2 x3 x4 x5 x1 x7x5 x1 x8∀ x9 : ο . (∀ x10 . and (x10Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)) (x5 x8 (x4 x10 x7))x9)x9)(∀ x7 . x7setexp x0 (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5))∀ x8 . x8setexp x0 (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5))(∀ x9 . x9Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)and (and (x5 (ap x7 x9) (ap x8 x9)) (x5 (ap x7 x9) (ap x7 (x3 x9 x2)))) (x5 (ap x8 (x3 x9 x2)) (ap x8 x9)))∀ x9 : ο . (∀ x10 . and (x10x0) (∀ x11 . x11Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)and (x5 (ap x7 x11) x10) (x5 x10 (ap x8 x11)))x9)x9)x6)explicit_Reals x0 x1 x2 x3 x4 x5x6
Known RealsStruct_explicit_RealsRealsStruct_explicit_Reals : ∀ x0 . RealsStruct x0explicit_Reals (field0 x0) (field4 x0) (RealsStruct_one x0) (field1b x0) (field2b x0) (RealsStruct_leq x0)
Theorem RealsStruct_ArchRealsStruct_Arch : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0RealsStruct_lt x0 (field4 x0) x1RealsStruct_leq x0 (field4 x0) x2∀ x3 : ο . (∀ x4 . and (x4RealsStruct_N x0) (RealsStruct_leq x0 x2 (field2b x0 x4 x1))x3)x3 (proof)
Known Field_of_RealsStruct_0Field_of_RealsStruct_0 : ∀ x0 . ap (Field_of_RealsStruct x0) 0 = field0 x0
Known Field_of_RealsStruct_2fField_of_RealsStruct_2f : ∀ x0 . RealsStruct x0(λ x2 . ap (ap (ap (Field_of_RealsStruct x0) 2) x2)) = field2b x0
Known Field_of_RealsStruct_3Field_of_RealsStruct_3 : ∀ x0 . ap (Field_of_RealsStruct x0) 3 = field4 x0
Theorem 241a7.. : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2setminus (field0 x0) (Sing (field4 x0))and (Field_div (Field_of_RealsStruct x0) x1 x2field0 x0) (x1 = field2b x0 x2 (Field_div (Field_of_RealsStruct x0) x1 x2)) (proof)
Theorem RealsStruct_div_closRealsStruct_div_clos : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2setminus (field0 x0) (Sing (field4 x0))Field_div (Field_of_RealsStruct x0) x1 x2field0 x0 (proof)
Theorem RealsStruct_mult_divRealsStruct_mult_div : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2setminus (field0 x0) (Sing (field4 x0))x1 = field2b x0 x2 (Field_div (Field_of_RealsStruct x0) x1 x2) (proof)
Theorem RealsStruct_div_undef1RealsStruct_div_undef1 : ∀ x0 . RealsStruct x0∀ x1 x2 . nIn x1 (field0 x0)Field_div (Field_of_RealsStruct x0) x1 x2 = 0 (proof)
Theorem RealsStruct_div_undef2RealsStruct_div_undef2 : ∀ x0 . RealsStruct x0∀ x1 x2 . nIn x2 (field0 x0)Field_div (Field_of_RealsStruct x0) x1 x2 = 0 (proof)
Theorem RealsStruct_div_undef3RealsStruct_div_undef3 : ∀ x0 . RealsStruct x0∀ x1 . Field_div (Field_of_RealsStruct x0) x1 (field4 x0) = 0 (proof)
Known Field_of_RealsStruct_4Field_of_RealsStruct_4 : ∀ x0 . ap (Field_of_RealsStruct x0) 4 = RealsStruct_one x0
Theorem RealsStruct_omega_exp_0RealsStruct_omega_exp_0 : ∀ x0 . RealsStruct x0∀ x1 . CRing_with_id_omega_exp (Field_of_RealsStruct x0) x1 0 = RealsStruct_one x0 (proof)
Theorem RealsStruct_omega_exp_SRealsStruct_omega_exp_S : ∀ x0 . RealsStruct x0∀ x1 x2 . x2omegaCRing_with_id_omega_exp (Field_of_RealsStruct x0) x1 (ordsucc x2) = field2b x0 x1 (CRing_with_id_omega_exp (Field_of_RealsStruct x0) x1 x2) (proof)
Theorem RealsStruct_omega_exp_1RealsStruct_omega_exp_1 : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0CRing_with_id_omega_exp (Field_of_RealsStruct x0) x1 1 = x1 (proof)
Theorem RealsStruct_omega_exp_closRealsStruct_omega_exp_clos : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2omegaCRing_with_id_omega_exp (Field_of_RealsStruct x0) x1 x2field0 x0 (proof)
Param RealsStruct_NposRealsStruct_Npos : ιι
Definition RealsStruct_dividesRealsStruct_divides := λ x0 x1 x2 . ∀ x3 : ο . (∀ x4 . and (x4RealsStruct_Npos x0) (field2b x0 x1 x4 = x2)x3)x3
Definition RealsStruct_PrimesRealsStruct_Primes := λ x0 . {x1 ∈ RealsStruct_N x0|and (RealsStruct_lt x0 (RealsStruct_one x0) x1) (∀ x2 . x2RealsStruct_Npos x0RealsStruct_divides x0 x2 x1or (x2 = RealsStruct_one x0) (x2 = x1))}
Definition RealsStruct_coprimeRealsStruct_coprime := λ x0 x1 x2 . ∀ x3 . x3RealsStruct_Npos x0RealsStruct_divides x0 x3 x1RealsStruct_divides x0 x3 x2x3 = RealsStruct_one x0
Param Field_minusField_minus : ιιι
Definition RealsStruct_absRealsStruct_abs := λ x0 x1 . If_i (RealsStruct_leq x0 (field4 x0) x1) x1 (Field_minus (Field_of_RealsStruct x0) x1)
Known RealsStruct_minus_closRealsStruct_minus_clos : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0Field_minus (Field_of_RealsStruct x0) x1field0 x0
Theorem RealsStruct_abs_closRealsStruct_abs_clos : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0RealsStruct_abs x0 x1field0 x0 (proof)
Theorem RealsStruct_abs_nonneg_caseRealsStruct_abs_nonneg_case : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0RealsStruct_leq x0 (field4 x0) x1RealsStruct_abs x0 x1 = x1 (proof)
Known RealsStruct_zero_InRealsStruct_zero_In : ∀ x0 . RealsStruct x0field4 x0field0 x0
Theorem RealsStruct_abs_neg_caseRealsStruct_abs_neg_case : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0RealsStruct_lt x0 x1 (field4 x0)RealsStruct_abs x0 x1 = Field_minus (Field_of_RealsStruct x0) x1 (proof)
Known RealsStruct_minus_zeroRealsStruct_minus_zero : ∀ x0 . RealsStruct x0Field_minus (Field_of_RealsStruct x0) (field4 x0) = field4 x0
Known RealsStruct_minus_leqRealsStruct_minus_leq : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0RealsStruct_leq x0 x1 x2RealsStruct_leq x0 (Field_minus (Field_of_RealsStruct x0) x2) (Field_minus (Field_of_RealsStruct x0) x1)
Known FalseEFalseE : False∀ x0 : ο . x0
Theorem RealsStruct_abs_nonnegRealsStruct_abs_nonneg : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0RealsStruct_leq x0 (field4 x0) (RealsStruct_abs x0 x1) (proof)
Known RealsStruct_minus_involRealsStruct_minus_invol : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0Field_minus (Field_of_RealsStruct x0) (Field_minus (Field_of_RealsStruct x0) x1) = x1
Theorem RealsStruct_abs_zero_invRealsStruct_abs_zero_inv : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0RealsStruct_abs x0 x1 = field4 x0x1 = field4 x0 (proof)
Known RealsStruct_plus_cancelRRealsStruct_plus_cancelR : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0∀ x3 . x3field0 x0field1b x0 x1 x3 = field1b x0 x2 x3x1 = x2
Known RealsStruct_minus_RRealsStruct_minus_R : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0field1b x0 x1 (Field_minus (Field_of_RealsStruct x0) x1) = field4 x0
Known RealsStruct_plus_closRealsStruct_plus_clos : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0field1b x0 x1 x2field0 x0
Theorem RealsStruct_dist_zero_eqRealsStruct_dist_zero_eq : ∀ x0 . RealsStruct x0∀ x1 . x1field0 x0∀ x2 . x2field0 x0RealsStruct_abs x0 (field1b x0 x1 (Field_minus (Field_of_RealsStruct x0) x2)) = field4 x0x1 = x2 (proof)

previous assets