Search for blocks/addresses/...
Proofgold Address
address
PUNr2iYtppFVTnh2BJZMW7KxZCi3p4t65um
total
0
mg
-
conjpub
-
current assets
55955..
/
7a3db..
bday:
12547
doc published by
PrGxv..
Param
SNo
SNo
:
ι
→
ο
Param
SNoLe
SNoLe
:
ι
→
ι
→
ο
Param
mul_SNo
mul_SNo
:
ι
→
ι
→
ι
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Param
SNoLt
SNoLt
:
ι
→
ι
→
ο
Known
SNoLtLe_or
SNoLtLe_or
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
or
(
SNoLt
x0
x1
)
(
SNoLe
x1
x0
)
Known
SNo_0
SNo_0
:
SNo
0
Known
SNoLtLe
SNoLtLe
:
∀ x0 x1 .
SNoLt
x0
x1
⟶
SNoLe
x0
x1
Known
mul_SNo_zeroR
mul_SNo_zeroR
:
∀ x0 .
SNo
x0
⟶
mul_SNo
x0
0
=
0
Known
neg_mul_SNo_Lt
neg_mul_SNo_Lt
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNoLt
x0
0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x2
x1
⟶
SNoLt
(
mul_SNo
x0
x1
)
(
mul_SNo
x0
x2
)
Known
nonneg_mul_SNo_Le
nonneg_mul_SNo_Le
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNoLe
0
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x1
x2
⟶
SNoLe
(
mul_SNo
x0
x1
)
(
mul_SNo
x0
x2
)
Theorem
SNo_sqr_nonneg
SNo_sqr_nonneg
:
∀ x0 .
SNo
x0
⟶
SNoLe
0
(
mul_SNo
x0
x0
)
(proof)
Known
SNoLt_trichotomy_or_impred
SNoLt_trichotomy_or_impred
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
∀ x2 : ο .
(
SNoLt
x0
x1
⟶
x2
)
⟶
(
x0
=
x1
⟶
x2
)
⟶
(
SNoLt
x1
x0
⟶
x2
)
⟶
x2
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
mul_SNo_neg_neg
mul_SNo_neg_neg
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
x0
0
⟶
SNoLt
x1
0
⟶
SNoLt
0
(
mul_SNo
x0
x1
)
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
mul_SNo_pos_pos
mul_SNo_pos_pos
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
0
x0
⟶
SNoLt
0
x1
⟶
SNoLt
0
(
mul_SNo
x0
x1
)
Theorem
SNo_zero_or_sqr_pos
SNo_zero_or_sqr_pos
:
∀ x0 .
SNo
x0
⟶
or
(
x0
=
0
)
(
SNoLt
0
(
mul_SNo
x0
x0
)
)
(proof)
Param
CSNo
CSNo
:
ι
→
ο
Param
CSNo_Re
CSNo_Re
:
ι
→
ι
Param
SNo_pair
SNo_pair
:
ι
→
ι
→
ι
Param
minus_SNo
minus_SNo
:
ι
→
ι
Param
CSNo_Im
CSNo_Im
:
ι
→
ι
Definition
minus_CSNo
minus_CSNo
:=
λ x0 .
SNo_pair
(
minus_SNo
(
CSNo_Re
x0
)
)
(
minus_SNo
(
CSNo_Im
x0
)
)
Known
CSNo_Re2
CSNo_Re2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
CSNo_Re
(
SNo_pair
x0
x1
)
=
x0
Known
SNo_minus_SNo
SNo_minus_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
minus_SNo
x0
)
Known
CSNo_ReR
CSNo_ReR
:
∀ x0 .
CSNo
x0
⟶
SNo
(
CSNo_Re
x0
)
Known
CSNo_ImR
CSNo_ImR
:
∀ x0 .
CSNo
x0
⟶
SNo
(
CSNo_Im
x0
)
Theorem
31582..
minus_CSNo_CRe
:
∀ x0 .
CSNo
x0
⟶
CSNo_Re
(
minus_CSNo
x0
)
=
minus_SNo
(
CSNo_Re
x0
)
(proof)
Known
CSNo_Im2
CSNo_Im2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
CSNo_Im
(
SNo_pair
x0
x1
)
=
x1
Theorem
4f721..
minus_CSNo_CIm
:
∀ x0 .
CSNo
x0
⟶
CSNo_Im
(
minus_CSNo
x0
)
=
minus_SNo
(
CSNo_Im
x0
)
(proof)
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Definition
add_CSNo
add_CSNo
:=
λ x0 x1 .
SNo_pair
(
add_SNo
(
CSNo_Re
x0
)
(
CSNo_Re
x1
)
)
(
add_SNo
(
CSNo_Im
x0
)
(
CSNo_Im
x1
)
)
Known
SNo_add_SNo
SNo_add_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
Theorem
15fd0..
add_CSNo_CRe
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo_Re
(
add_CSNo
x0
x1
)
=
add_SNo
(
CSNo_Re
x0
)
(
CSNo_Re
x1
)
(proof)
Theorem
2fac0..
add_CSNo_CIm
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo_Im
(
add_CSNo
x0
x1
)
=
add_SNo
(
CSNo_Im
x0
)
(
CSNo_Im
x1
)
(proof)
Known
CSNo_ReIm_split
CSNo_ReIm_split
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo_Re
x0
=
CSNo_Re
x1
⟶
CSNo_Im
x0
=
CSNo_Im
x1
⟶
x0
=
x1
Known
CSNo_add_CSNo
CSNo_add_CSNo
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
(
add_CSNo
x0
x1
)
Known
add_SNo_com
add_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
x1
=
add_SNo
x1
x0
Theorem
80a5b..
add_CSNo_com
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
add_CSNo
x0
x1
=
add_CSNo
x1
x0
(proof)
Known
f_eq_i
f_eq_i
:
∀ x0 :
ι → ι
.
∀ x1 x2 .
x1
=
x2
⟶
x0
x1
=
x0
x2
Known
add_SNo_assoc
add_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
(
add_SNo
x0
x1
)
x2
Theorem
b63e9..
add_CSNo_assoc
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
add_CSNo
x0
(
add_CSNo
x1
x2
)
=
add_CSNo
(
add_CSNo
x0
x1
)
x2
(proof)
Known
add_SNo_com_4_inner_mid
add_SNo_com_4_inner_mid
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
add_SNo
(
add_SNo
x0
x1
)
(
add_SNo
x2
x3
)
=
add_SNo
(
add_SNo
x0
x2
)
(
add_SNo
x1
x3
)
Theorem
add_SNo_rotate_4_0312
add_SNo_rotate_4_0312
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
add_SNo
(
add_SNo
x0
x1
)
(
add_SNo
x2
x3
)
=
add_SNo
(
add_SNo
x0
x3
)
(
add_SNo
x1
x2
)
(proof)
Known
SNo_mul_SNo
SNo_mul_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
mul_SNo
x0
x1
)
Theorem
c7e3d..
mul_CSNo_ReR
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
SNo
(
add_SNo
(
mul_SNo
(
CSNo_Re
x0
)
(
CSNo_Re
x1
)
)
(
minus_SNo
(
mul_SNo
(
CSNo_Im
x0
)
(
CSNo_Im
x1
)
)
)
)
(proof)
Theorem
79ab2..
mul_CSNo_ImR
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
SNo
(
add_SNo
(
mul_SNo
(
CSNo_Re
x0
)
(
CSNo_Im
x1
)
)
(
mul_SNo
(
CSNo_Im
x0
)
(
CSNo_Re
x1
)
)
)
(proof)
Definition
mul_CSNo
mul_CSNo
:=
λ x0 x1 .
SNo_pair
(
add_SNo
(
mul_SNo
(
CSNo_Re
x0
)
(
CSNo_Re
x1
)
)
(
minus_SNo
(
mul_SNo
(
CSNo_Im
x0
)
(
CSNo_Im
x1
)
)
)
)
(
add_SNo
(
mul_SNo
(
CSNo_Re
x0
)
(
CSNo_Im
x1
)
)
(
mul_SNo
(
CSNo_Im
x0
)
(
CSNo_Re
x1
)
)
)
Theorem
a8c42..
mul_CSNo_CRe
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo_Re
(
mul_CSNo
x0
x1
)
=
add_SNo
(
mul_SNo
(
CSNo_Re
x0
)
(
CSNo_Re
x1
)
)
(
minus_SNo
(
mul_SNo
(
CSNo_Im
x0
)
(
CSNo_Im
x1
)
)
)
(proof)
Theorem
2c425..
mul_CSNo_CIm
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo_Im
(
mul_CSNo
x0
x1
)
=
add_SNo
(
mul_SNo
(
CSNo_Re
x0
)
(
CSNo_Im
x1
)
)
(
mul_SNo
(
CSNo_Im
x0
)
(
CSNo_Re
x1
)
)
(proof)
Known
CSNo_I
CSNo_I
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
CSNo
(
SNo_pair
x0
x1
)
Theorem
d8721..
CSNo_mul_CSNo
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
(
mul_CSNo
x0
x1
)
(proof)
Known
mul_SNo_com
mul_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
x1
=
mul_SNo
x1
x0
Theorem
1e9ba..
mul_CSNo_com
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
mul_CSNo
x0
x1
=
mul_CSNo
x1
x0
(proof)
Known
mul_SNo_distrL
mul_SNo_distrL
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
(
mul_SNo
x0
x1
)
(
mul_SNo
x0
x2
)
Known
mul_SNo_minus_distrR
mul_minus_SNo_distrR
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
(
minus_SNo
x1
)
=
minus_SNo
(
mul_SNo
x0
x1
)
Known
minus_add_SNo_distr
minus_add_SNo_distr
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
minus_SNo
(
add_SNo
x0
x1
)
=
add_SNo
(
minus_SNo
x0
)
(
minus_SNo
x1
)
Known
SNo_mul_SNo_3
SNo_mul_SNo_3
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
(
mul_SNo
x0
(
mul_SNo
x1
x2
)
)
Known
mul_SNo_assoc
mul_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
mul_SNo
x1
x2
)
=
mul_SNo
(
mul_SNo
x0
x1
)
x2
Known
mul_SNo_minus_distrL
mul_SNo_minus_distrL
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
(
minus_SNo
x0
)
x1
=
minus_SNo
(
mul_SNo
x0
x1
)
Known
mul_SNo_distrR
mul_SNo_distrR
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
(
add_SNo
x0
x1
)
x2
=
add_SNo
(
mul_SNo
x0
x2
)
(
mul_SNo
x1
x2
)
Theorem
8912c..
mul_CSNo_assoc
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
mul_CSNo
x0
(
mul_CSNo
x1
x2
)
=
mul_CSNo
(
mul_CSNo
x0
x1
)
x2
(proof)
Known
SNo_CSNo
SNo_CSNo
:
∀ x0 .
SNo
x0
⟶
CSNo
x0
Theorem
b5ed6..
CSNo_0
:
CSNo
0
(proof)
Param
ordsucc
ordsucc
:
ι
→
ι
Known
SNo_1
SNo_1
:
SNo
1
Theorem
ca69e..
CSNo_1
:
CSNo
1
(proof)
Known
SNo_pair_0
SNo_pair_0
:
∀ x0 .
SNo_pair
x0
0
=
x0
Known
mul_SNo_oneL
mul_SNo_oneL
:
∀ x0 .
SNo
x0
⟶
mul_SNo
1
x0
=
x0
Known
minus_SNo_0
minus_SNo_0
:
minus_SNo
0
=
0
Known
mul_SNo_zeroL
mul_SNo_zeroL
:
∀ x0 .
SNo
x0
⟶
mul_SNo
0
x0
=
0
Known
add_SNo_0L
add_SNo_0L
:
∀ x0 .
SNo
x0
⟶
add_SNo
0
x0
=
x0
Theorem
42258..
mul_CSNo_oneL
:
∀ x0 .
CSNo
x0
⟶
mul_CSNo
1
x0
=
x0
(proof)
Theorem
b904d..
mul_CSNo_distrL
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
mul_CSNo
x0
(
add_CSNo
x1
x2
)
=
add_CSNo
(
mul_CSNo
x0
x1
)
(
mul_CSNo
x0
x2
)
(proof)
Theorem
b0c29..
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
mul_CSNo
(
add_CSNo
x0
x1
)
x2
=
add_CSNo
(
mul_CSNo
x0
x2
)
(
mul_CSNo
x1
x2
)
(proof)
Known
SNo_Re
SNo_Re
:
∀ x0 .
SNo
x0
⟶
CSNo_Re
x0
=
x0
Known
SNo_Im
SNo_Im
:
∀ x0 .
SNo
x0
⟶
CSNo_Im
x0
=
0
Known
add_SNo_0R
add_SNo_0R
:
∀ x0 .
SNo
x0
⟶
add_SNo
x0
0
=
x0
Theorem
15de6..
mul_SNo_mul_CSNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
x1
=
mul_CSNo
x0
x1
(proof)
Definition
Complex_i
Complex_i
:=
SNo_pair
0
1
Known
SNo_Complex_i
SNo_Complex_i
:
CSNo
Complex_i
Known
CSNo_minus_CSNo
CSNo_minus_CSNo
:
∀ x0 .
CSNo
x0
⟶
CSNo
(
minus_CSNo
x0
)
Known
Re_i
Re_i
:
CSNo_Re
Complex_i
=
0
Known
Im_i
Im_i
:
CSNo_Im
Complex_i
=
1
Known
Re_1
Re_1
:
CSNo_Re
1
=
1
Known
Im_1
Im_1
:
CSNo_Im
1
=
0
Theorem
b65ee..
Complex_i_sqr
:
mul_CSNo
Complex_i
Complex_i
=
minus_CSNo
1
(proof)
Known
minus_SNo_invol
minus_SNo_invol
:
∀ x0 .
SNo
x0
⟶
minus_SNo
(
minus_SNo
x0
)
=
x0
Known
mul_SNo_com_3_0_1
mul_SNo_com_3_0_1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
mul_SNo
x1
x2
)
=
mul_SNo
x1
(
mul_SNo
x0
x2
)
Known
add_SNo_minus_SNo_linv
add_SNo_minus_SNo_linv
:
∀ x0 .
SNo
x0
⟶
add_SNo
(
minus_SNo
x0
)
x0
=
0
Theorem
f9fad..
CSNo_relative_recip
:
∀ x0 .
CSNo
x0
⟶
∀ x1 .
SNo
x1
⟶
mul_SNo
(
add_SNo
(
mul_SNo
(
CSNo_Re
x0
)
(
CSNo_Re
x0
)
)
(
mul_SNo
(
CSNo_Im
x0
)
(
CSNo_Im
x0
)
)
)
x1
=
1
⟶
mul_CSNo
x0
(
add_CSNo
(
mul_CSNo
x1
(
CSNo_Re
x0
)
)
(
minus_CSNo
(
mul_CSNo
Complex_i
(
mul_CSNo
x1
(
CSNo_Im
x0
)
)
)
)
)
=
1
(proof)
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Definition
setprod
setprod
:=
λ x0 x1 .
lam
x0
(
λ x2 .
x1
)
Param
real
real
:
ι
Param
ap
ap
:
ι
→
ι
→
ι
Definition
complex
complex
:=
{
SNo_pair
(
ap
x0
0
)
(
ap
x0
1
)
|x0 ∈
setprod
real
real
}
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Known
tuple_2_0_eq
tuple_2_0_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
0
=
x0
Known
tuple_2_1_eq
tuple_2_1_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
1
=
x1
Known
ReplI
ReplI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
prim5
x0
x1
Known
tuple_2_setprod
tuple_2_setprod
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
x2
x3
)
∈
setprod
x0
x1
Theorem
complex_I
complex_I
:
∀ x0 .
x0
∈
real
⟶
∀ x1 .
x1
∈
real
⟶
SNo_pair
x0
x1
∈
complex
(proof)
Known
ReplE_impred
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Known
ap0_Sigma
ap0_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
0
∈
x0
Known
ap1_Sigma
ap1_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
1
∈
x1
(
ap
x2
0
)
Theorem
complex_E
complex_E
:
∀ x0 .
x0
∈
complex
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
real
⟶
∀ x3 .
x3
∈
real
⟶
x0
=
SNo_pair
x2
x3
⟶
x1
)
⟶
x1
(proof)
Known
real_SNo
real_SNo
:
∀ x0 .
x0
∈
real
⟶
SNo
x0
Theorem
complex_CSNo
complex_CSNo
:
∀ x0 .
x0
∈
complex
⟶
CSNo
x0
(proof)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
real_0
real_0
:
0
∈
real
Theorem
real_complex
real_complex
:
real
⊆
complex
(proof)
Theorem
complex_0
complex_0
:
0
∈
complex
(proof)
Known
real_1
real_1
:
1
∈
real
Theorem
complex_1
complex_1
:
1
∈
complex
(proof)
Theorem
complex_i
complex_i
:
Complex_i
∈
complex
(proof)
Theorem
complex_Re_eq
complex_Re_eq
:
∀ x0 .
x0
∈
real
⟶
∀ x1 .
x1
∈
real
⟶
CSNo_Re
(
SNo_pair
x0
x1
)
=
x0
(proof)
Theorem
complex_Im_eq
complex_Im_eq
:
∀ x0 .
x0
∈
real
⟶
∀ x1 .
x1
∈
real
⟶
CSNo_Im
(
SNo_pair
x0
x1
)
=
x1
(proof)
Known
CSNo_ReIm
CSNo_ReIm
:
∀ x0 .
CSNo
x0
⟶
x0
=
SNo_pair
(
CSNo_Re
x0
)
(
CSNo_Im
x0
)
Theorem
a6f8f..
:
∀ x0 .
x0
∈
complex
⟶
x0
=
SNo_pair
(
CSNo_Re
x0
)
(
CSNo_Im
x0
)
(proof)
Theorem
complex_Re_real
complex_Re_real
:
∀ x0 .
x0
∈
complex
⟶
CSNo_Re
x0
∈
real
(proof)
Theorem
complex_Im_real
complex_Im_real
:
∀ x0 .
x0
∈
complex
⟶
CSNo_Im
x0
∈
real
(proof)
Theorem
complex_ReIm_split
complex_ReIm_split
:
∀ x0 .
x0
∈
complex
⟶
∀ x1 .
x1
∈
complex
⟶
CSNo_Re
x0
=
CSNo_Re
x1
⟶
CSNo_Im
x0
=
CSNo_Im
x1
⟶
x0
=
x1
(proof)
Known
real_minus_SNo
real_minus_SNo
:
∀ x0 .
x0
∈
real
⟶
minus_SNo
x0
∈
real
Theorem
complex_minus_CSNo
complex_minus_CSNo
:
∀ x0 .
x0
∈
complex
⟶
minus_CSNo
x0
∈
complex
(proof)
Known
real_add_SNo
real_add_SNo
:
∀ x0 .
x0
∈
real
⟶
∀ x1 .
x1
∈
real
⟶
add_SNo
x0
x1
∈
real
Theorem
complex_add_CSNo
complex_add_CSNo
:
∀ x0 .
x0
∈
complex
⟶
∀ x1 .
x1
∈
complex
⟶
add_CSNo
x0
x1
∈
complex
(proof)
Known
real_mul_SNo
real_mul_SNo
:
∀ x0 .
x0
∈
real
⟶
∀ x1 .
x1
∈
real
⟶
mul_SNo
x0
x1
∈
real
Theorem
complex_mul_CSNo
complex_mul_CSNo
:
∀ x0 .
x0
∈
complex
⟶
∀ x1 .
x1
∈
complex
⟶
mul_CSNo
x0
x1
∈
complex
(proof)
Theorem
real_Re_eq
real_Re_eq
:
∀ x0 .
x0
∈
real
⟶
CSNo_Re
x0
=
x0
(proof)
Theorem
real_Im_eq
real_Im_eq
:
∀ x0 .
x0
∈
real
⟶
CSNo_Im
x0
=
0
(proof)
Theorem
mul_i_real_eq
mul_i_real_eq
:
∀ x0 .
x0
∈
real
⟶
mul_CSNo
Complex_i
x0
=
SNo_pair
0
x0
(proof)
Theorem
real_Re_i_eq
real_Re_i_eq
:
∀ x0 .
x0
∈
real
⟶
CSNo_Re
(
mul_CSNo
Complex_i
x0
)
=
0
(proof)
Theorem
real_Im_i_eq
real_Im_i_eq
:
∀ x0 .
x0
∈
real
⟶
CSNo_Im
(
mul_CSNo
Complex_i
x0
)
=
x0
(proof)
Theorem
complex_eta
complex_eta
:
∀ x0 .
x0
∈
complex
⟶
x0
=
add_CSNo
(
CSNo_Re
x0
)
(
mul_CSNo
Complex_i
(
CSNo_Im
x0
)
)
(proof)
Theorem
dfa13..
:
∀ x0 .
x0
∈
real
⟶
∀ x1 .
x1
∈
real
⟶
add_CSNo
x0
(
mul_CSNo
Complex_i
x1
)
∈
complex
(proof)
Theorem
894e6..
:
∀ x0 .
x0
∈
complex
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
real
⟶
∀ x3 .
x3
∈
real
⟶
x0
=
add_CSNo
x2
(
mul_CSNo
Complex_i
x3
)
⟶
x1
)
⟶
x1
(proof)
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
nonzero_real_recip_ex
nonzero_real_recip_ex
:
∀ x0 .
x0
∈
real
⟶
(
x0
=
0
⟶
∀ x1 : ο .
x1
)
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
real
)
(
mul_SNo
x0
x2
=
1
)
⟶
x1
)
⟶
x1
Known
Re_0
Re_0
:
CSNo_Re
0
=
0
Definition
False
False
:=
∀ x0 : ο .
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
SNoLt_irref
SNoLt_irref
:
∀ x0 .
not
(
SNoLt
x0
x0
)
Known
SNoLtLe_tra
SNoLtLe_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x1
⟶
SNoLe
x1
x2
⟶
SNoLt
x0
x2
Known
add_SNo_Le2
add_SNo_Le2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x1
x2
⟶
SNoLe
(
add_SNo
x0
x1
)
(
add_SNo
x0
x2
)
Known
Im_0
Im_0
:
CSNo_Im
0
=
0
Known
add_SNo_Le1
add_SNo_Le1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x2
⟶
SNoLe
(
add_SNo
x0
x1
)
(
add_SNo
x2
x1
)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
nonzero_complex_recip_ex
nonzero_complex_recip_ex
:
∀ x0 .
x0
∈
complex
⟶
(
x0
=
0
⟶
∀ x1 : ο .
x1
)
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
complex
)
(
mul_CSNo
x0
x2
=
1
)
⟶
x1
)
⟶
x1
(proof)
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
SepE
SepE
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
and
(
x2
∈
x0
)
(
x1
x2
)
Theorem
complex_real_set_eq
complex_real_set_eq
:
real
=
{x1 ∈
complex
|
CSNo_Re
x1
=
x1
}
(proof)
Param
explicit_Field
explicit_Field
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ο
Known
explicit_Field_I
explicit_Field_I
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x3
x5
x6
∈
x0
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x5
(
x3
x6
x7
)
=
x3
(
x3
x5
x6
)
x7
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x3
x5
x6
=
x3
x6
x5
)
⟶
x1
∈
x0
⟶
(
∀ x5 .
x5
∈
x0
⟶
x3
x1
x5
=
x5
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
x7
∈
x0
)
(
x3
x5
x7
=
x1
)
⟶
x6
)
⟶
x6
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x4
x5
x6
∈
x0
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x5
(
x4
x6
x7
)
=
x4
(
x4
x5
x6
)
x7
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x4
x5
x6
=
x4
x6
x5
)
⟶
x2
∈
x0
⟶
(
x2
=
x1
⟶
∀ x5 : ο .
x5
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
x4
x2
x5
=
x5
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
(
x5
=
x1
⟶
∀ x6 : ο .
x6
)
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
x7
∈
x0
)
(
x4
x5
x7
=
x2
)
⟶
x6
)
⟶
x6
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x5
(
x3
x6
x7
)
=
x3
(
x4
x5
x6
)
(
x4
x5
x7
)
)
⟶
explicit_Field
x0
x1
x2
x3
x4
Known
add_CSNo_0L
add_CSNo_0L
:
∀ x0 .
CSNo
x0
⟶
add_CSNo
0
x0
=
x0
Known
add_CSNo_minus_CSNo_rinv
add_CSNo_minus_CSNo_rinv
:
∀ x0 .
CSNo
x0
⟶
add_CSNo
x0
(
minus_CSNo
x0
)
=
0
Known
neq_1_0
neq_1_0
:
1
=
0
⟶
∀ x0 : ο .
x0
Theorem
881af..
:
explicit_Field
complex
0
1
add_CSNo
mul_CSNo
(proof)
Param
explicit_Complex
explicit_Complex
:
ι
→
(
ι
→
ι
) →
(
ι
→
ι
) →
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ο
Param
explicit_Reals
explicit_Reals
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
ο
Known
explicit_Complex_I
explicit_Complex_I
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
∀ x3 x4 x5 .
∀ x6 x7 :
ι →
ι → ι
.
explicit_Field
x0
x3
x4
x6
x7
⟶
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι → ο
.
explicit_Reals
{x10 ∈
x0
|
x1
x10
=
x10
}
x3
x4
x6
x7
x9
⟶
x8
)
⟶
x8
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
x2
x8
∈
{x9 ∈
x0
|
x1
x9
=
x9
}
)
⟶
x5
∈
x0
⟶
(
∀ x8 .
x8
∈
x0
⟶
x1
x8
∈
x0
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
x2
x8
∈
x0
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
x8
=
x6
(
x1
x8
)
(
x7
x5
(
x2
x8
)
)
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
x1
x8
=
x1
x9
⟶
x2
x8
=
x2
x9
⟶
x8
=
x9
)
⟶
x6
(
x7
x5
x5
)
x4
=
x3
⟶
explicit_Complex
x0
x1
x2
x3
x4
x5
x6
x7
Param
bij
bij
:
ι
→
ι
→
(
ι
→
ι
) →
ο
Param
iff
iff
:
ο
→
ο
→
ο
Known
explicit_Reals_transfer
explicit_Reals_transfer
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 x7 x8 .
∀ x9 x10 :
ι →
ι → ι
.
∀ x11 :
ι →
ι → ο
.
∀ x12 :
ι → ι
.
explicit_Reals
x0
x1
x2
x3
x4
x5
⟶
bij
x0
x6
x12
⟶
x12
x1
=
x7
⟶
x12
x2
=
x8
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x12
(
x3
x13
x14
)
=
x9
(
x12
x13
)
(
x12
x14
)
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x12
(
x4
x13
x14
)
=
x10
(
x12
x13
)
(
x12
x14
)
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
iff
(
x5
x13
x14
)
(
x11
(
x12
x13
)
(
x12
x14
)
)
)
⟶
explicit_Reals
x6
x7
x8
x9
x10
x11
Known
explicit_Reals_real
:
explicit_Reals
real
0
1
add_SNo
mul_SNo
SNoLe
Known
bij_id
bij_id
:
∀ x0 .
bij
x0
x0
(
λ x1 .
x1
)
Known
add_SNo_add_CSNo
add_SNo_add_CSNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
x1
=
add_CSNo
x0
x1
Known
iff_refl
iff_refl
:
∀ x0 : ο .
iff
x0
x0
Known
add_CSNo_minus_CSNo_linv
add_CSNo_minus_CSNo_linv
:
∀ x0 .
CSNo
x0
⟶
add_CSNo
(
minus_CSNo
x0
)
x0
=
0
Theorem
73d02..
:
explicit_Complex
complex
CSNo_Re
CSNo_Im
0
1
Complex_i
add_CSNo
mul_CSNo
(proof)
previous assets