Search for blocks/addresses/...

Proofgold Address

address
PUPjJgrNe1tv3sqNKPHnhxz2CPMr9HnvvfZ
total
0
mg
-
conjpub
-
current assets
4852e../afef2.. bday: 4909 doc published by Pr6Pc..
Param lamSigma : ι(ιι) → ι
Param ordsuccordsucc : ιι
Param apap : ιιι
Param If_iIf_i : οιιι
Known lam_etalam_eta : ∀ x0 . ∀ x1 : ι → ι . lam x0 (ap (lam x0 x1)) = lam x0 x1
Theorem tuple_3_etatuple_3_eta : ∀ x0 x1 x2 . lam 3 (ap (lam 3 (λ x4 . If_i (x4 = 0) x0 (If_i (x4 = 1) x1 x2)))) = lam 3 (λ x4 . If_i (x4 = 0) x0 (If_i (x4 = 1) x1 x2)) (proof)
Theorem tuple_4_etatuple_4_eta : ∀ x0 x1 x2 x3 . lam 4 (ap (lam 4 (λ x5 . If_i (x5 = 0) x0 (If_i (x5 = 1) x1 (If_i (x5 = 2) x2 x3))))) = lam 4 (λ x5 . If_i (x5 = 0) x0 (If_i (x5 = 1) x1 (If_i (x5 = 2) x2 x3))) (proof)
Known betabeta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0ap (lam x0 x1) x2 = x1 x2
Known In_0_3In_0_3 : 03
Known If_i_1If_i_1 : ∀ x0 : ο . ∀ x1 x2 . x0If_i x0 x1 x2 = x1
Theorem tuple_3_0_eqtuple_3_0_eq : ∀ x0 x1 x2 . ap (lam 3 (λ x4 . If_i (x4 = 0) x0 (If_i (x4 = 1) x1 x2))) 0 = x0 (proof)
Known In_1_3In_1_3 : 13
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Known If_i_0If_i_0 : ∀ x0 : ο . ∀ x1 x2 . not x0If_i x0 x1 x2 = x2
Known neq_1_0neq_1_0 : 1 = 0∀ x0 : ο . x0
Theorem tuple_3_1_eqtuple_3_1_eq : ∀ x0 x1 x2 . ap (lam 3 (λ x4 . If_i (x4 = 0) x0 (If_i (x4 = 1) x1 x2))) 1 = x1 (proof)
Known In_2_3In_2_3 : 23
Known neq_2_0neq_2_0 : 2 = 0∀ x0 : ο . x0
Known neq_2_1neq_2_1 : 2 = 1∀ x0 : ο . x0
Theorem tuple_3_2_eqtuple_3_2_eq : ∀ x0 x1 x2 . ap (lam 3 (λ x4 . If_i (x4 = 0) x0 (If_i (x4 = 1) x1 x2))) 2 = x2 (proof)
Known In_0_4In_0_4 : 04
Theorem tuple_4_0_eqtuple_4_0_eq : ∀ x0 x1 x2 x3 . ap (lam 4 (λ x5 . If_i (x5 = 0) x0 (If_i (x5 = 1) x1 (If_i (x5 = 2) x2 x3)))) 0 = x0 (proof)
Known In_1_4In_1_4 : 14
Theorem tuple_4_1_eqtuple_4_1_eq : ∀ x0 x1 x2 x3 . ap (lam 4 (λ x5 . If_i (x5 = 0) x0 (If_i (x5 = 1) x1 (If_i (x5 = 2) x2 x3)))) 1 = x1 (proof)
Known In_2_4In_2_4 : 24
Theorem tuple_4_2_eqtuple_4_2_eq : ∀ x0 x1 x2 x3 . ap (lam 4 (λ x5 . If_i (x5 = 0) x0 (If_i (x5 = 1) x1 (If_i (x5 = 2) x2 x3)))) 2 = x2 (proof)
Known In_3_4In_3_4 : 34
Known neq_3_0neq_3_0 : 3 = 0∀ x0 : ο . x0
Known neq_3_1neq_3_1 : 3 = 1∀ x0 : ο . x0
Known neq_3_2neq_3_2 : 3 = 2∀ x0 : ο . x0
Theorem tuple_4_3_eqtuple_4_3_eq : ∀ x0 x1 x2 x3 . ap (lam 4 (λ x5 . If_i (x5 = 0) x0 (If_i (x5 = 1) x1 (If_i (x5 = 2) x2 x3)))) 3 = x3 (proof)
Param PiPi : ι(ιι) → ι
Definition setexpsetexp := λ x0 x1 . Pi x1 (λ x2 . x0)
Known lam_Pilam_Pi : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x2 x3x1 x3)lam x0 x2Pi x0 x1
Known cases_3cases_3 : ∀ x0 . x03∀ x1 : ι → ο . x1 0x1 1x1 2x1 x0
Theorem tuple_3_in_A_3tuple_3_in_A_3 : ∀ x0 x1 x2 x3 . x0x3x1x3x2x3lam 3 (λ x4 . If_i (x4 = 0) x0 (If_i (x4 = 1) x1 x2))setexp x3 3 (proof)
Param bijbij : ιι(ιι) → ο
Param nat_pnat_p : ιο
Known PigeonHole_nat_bijPigeonHole_nat_bij : ∀ x0 . nat_p x0∀ x1 : ι → ι . (∀ x2 . x2x0x1 x2x0)(∀ x2 . x2x0∀ x3 . x3x0x1 x2 = x1 x3x2 = x3)bij x0 x0 x1
Known nat_ordsuccnat_ordsucc : ∀ x0 . nat_p x0nat_p (ordsucc x0)
Known nat_2nat_2 : nat_p 2
Theorem tuple_3_bij_3tuple_3_bij_3 : ∀ x0 x1 x2 . x03x13x23(x0 = x1∀ x3 : ο . x3)(x0 = x2∀ x3 : ο . x3)(x1 = x2∀ x3 : ο . x3)bij 3 3 (ap (lam 3 (λ x3 . If_i (x3 = 0) x0 (If_i (x3 = 1) x1 x2)))) (proof)
Known cases_4cases_4 : ∀ x0 . x04∀ x1 : ι → ο . x1 0x1 1x1 2x1 3x1 x0
Theorem tuple_4_in_A_4tuple_4_in_A_4 : ∀ x0 x1 x2 x3 x4 . x0x4x1x4x2x4x3x4lam 4 (λ x5 . If_i (x5 = 0) x0 (If_i (x5 = 1) x1 (If_i (x5 = 2) x2 x3)))setexp x4 4 (proof)
Theorem tuple_4_bij_4tuple_4_bij_4 : ∀ x0 x1 x2 x3 . x04x14x24x34(x0 = x1∀ x4 : ο . x4)(x0 = x2∀ x4 : ο . x4)(x0 = x3∀ x4 : ο . x4)(x1 = x2∀ x4 : ο . x4)(x1 = x3∀ x4 : ο . x4)(x2 = x3∀ x4 : ο . x4)bij 4 4 (ap (lam 4 (λ x4 . If_i (x4 = 0) x0 (If_i (x4 = 1) x1 (If_i (x4 = 2) x2 x3))))) (proof)

previous assets