Search for blocks/addresses/...

Proofgold Address

address
PUPwTfWakDdq644F8i8sfpTuuvwAsaNiosN
total
0
mg
-
conjpub
-
current assets
4464c../dde04.. bday: 2838 doc published by PrGxv..
Param 0fc90.. : ι(ιι) → ι
Param 4ae4a.. : ιι
Param 4a7ef.. : ι
Param If_i : οιιι
Param e0e40.. : ι((ιο) → ο) → ι
Param eb53d.. : ιCT2 ι
Definition 21805.. := λ x0 . λ x1 : (ι → ο) → ο . λ x2 : ι → ι → ι . λ x3 : ι → ι . 0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (λ x4 . If_i (x4 = 4a7ef..) x0 (If_i (x4 = 4ae4a.. 4a7ef..) (e0e40.. x0 x1) (If_i (x4 = 4ae4a.. (4ae4a.. 4a7ef..)) (eb53d.. x0 x2) (0fc90.. x0 x3))))
Param f482f.. : ιιι
Known 9f6be.. : ∀ x0 x1 x2 x3 . f482f.. (0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (λ x5 . If_i (x5 = 4a7ef..) x0 (If_i (x5 = 4ae4a.. 4a7ef..) x1 (If_i (x5 = 4ae4a.. (4ae4a.. 4a7ef..)) x2 x3)))) 4a7ef.. = x0
Theorem 55ff1.. : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 : ι → ι . x0 = 21805.. x1 x2 x3 x4x1 = f482f.. x0 4a7ef.. (proof)
Theorem 370e3.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . x0 = f482f.. (21805.. x0 x1 x2 x3) 4a7ef.. (proof)
Param decode_c : ι(ιο) → ο
Known 8a328.. : ∀ x0 x1 x2 x3 . f482f.. (0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (λ x5 . If_i (x5 = 4a7ef..) x0 (If_i (x5 = 4ae4a.. 4a7ef..) x1 (If_i (x5 = 4ae4a.. (4ae4a.. 4a7ef..)) x2 x3)))) (4ae4a.. 4a7ef..) = x1
Known 81500.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ο . (∀ x3 . x2 x3prim1 x3 x0)decode_c (e0e40.. x0 x1) x2 = x1 x2
Theorem d044c.. : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 : ι → ι . x0 = 21805.. x1 x2 x3 x4∀ x5 : ι → ο . (∀ x6 . x5 x6prim1 x6 x1)x2 x5 = decode_c (f482f.. x0 (4ae4a.. 4a7ef..)) x5 (proof)
Theorem 680a0.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ο . (∀ x5 . x4 x5prim1 x5 x0)x1 x4 = decode_c (f482f.. (21805.. x0 x1 x2 x3) (4ae4a.. 4a7ef..)) x4 (proof)
Param e3162.. : ιιιι
Known 142e6.. : ∀ x0 x1 x2 x3 . f482f.. (0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (λ x5 . If_i (x5 = 4a7ef..) x0 (If_i (x5 = 4ae4a.. 4a7ef..) x1 (If_i (x5 = 4ae4a.. (4ae4a.. 4a7ef..)) x2 x3)))) (4ae4a.. (4ae4a.. 4a7ef..)) = x2
Known 35054.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 . prim1 x2 x0∀ x3 . prim1 x3 x0e3162.. (eb53d.. x0 x1) x2 x3 = x1 x2 x3
Theorem 43599.. : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 : ι → ι . x0 = 21805.. x1 x2 x3 x4∀ x5 . prim1 x5 x1∀ x6 . prim1 x6 x1x3 x5 x6 = e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..))) x5 x6 (proof)
Theorem e0fb6.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 . prim1 x4 x0∀ x5 . prim1 x5 x0x2 x4 x5 = e3162.. (f482f.. (21805.. x0 x1 x2 x3) (4ae4a.. (4ae4a.. 4a7ef..))) x4 x5 (proof)
Known 62a6b.. : ∀ x0 x1 x2 x3 . f482f.. (0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (λ x5 . If_i (x5 = 4a7ef..) x0 (If_i (x5 = 4ae4a.. 4a7ef..) x1 (If_i (x5 = 4ae4a.. (4ae4a.. 4a7ef..)) x2 x3)))) (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) = x3
Known f22ec.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . prim1 x2 x0f482f.. (0fc90.. x0 x1) x2 = x1 x2
Theorem 4695f.. : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 : ι → ι . x0 = 21805.. x1 x2 x3 x4∀ x5 . prim1 x5 x1x4 x5 = f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x5 (proof)
Theorem d4012.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 . prim1 x4 x0x3 x4 = f482f.. (f482f.. (21805.. x0 x1 x2 x3) (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x4 (proof)
Definition and := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Known and4I : ∀ x0 x1 x2 x3 : ο . x0x1x2x3and (and (and x0 x1) x2) x3
Theorem 54839.. : ∀ x0 x1 . ∀ x2 x3 : (ι → ο) → ο . ∀ x4 x5 : ι → ι → ι . ∀ x6 x7 : ι → ι . 21805.. x0 x2 x4 x6 = 21805.. x1 x3 x5 x7and (and (and (x0 = x1) (∀ x8 : ι → ο . (∀ x9 . x8 x9prim1 x9 x0)x2 x8 = x3 x8)) (∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0x4 x8 x9 = x5 x8 x9)) (∀ x8 . prim1 x8 x0x6 x8 = x7 x8) (proof)
Param iff : οοο
Known 4402a.. : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . prim1 x3 x0x1 x3 = x2 x3)0fc90.. x0 x1 = 0fc90.. x0 x2
Known 8fdaf.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . (∀ x3 . prim1 x3 x0∀ x4 . prim1 x4 x0x1 x3 x4 = x2 x3 x4)eb53d.. x0 x1 = eb53d.. x0 x2
Known fe043.. : ∀ x0 . ∀ x1 x2 : (ι → ο) → ο . (∀ x3 : ι → ο . (∀ x4 . x3 x4prim1 x4 x0)iff (x1 x3) (x2 x3))e0e40.. x0 x1 = e0e40.. x0 x2
Theorem 0ebe9.. : ∀ x0 . ∀ x1 x2 : (ι → ο) → ο . ∀ x3 x4 : ι → ι → ι . ∀ x5 x6 : ι → ι . (∀ x7 : ι → ο . (∀ x8 . x7 x8prim1 x8 x0)iff (x1 x7) (x2 x7))(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0x3 x7 x8 = x4 x7 x8)(∀ x7 . prim1 x7 x0x5 x7 = x6 x7)21805.. x0 x1 x3 x5 = 21805.. x0 x2 x4 x6 (proof)
Definition 0df03.. := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : (ι → ο) → ο . ∀ x4 : ι → ι → ι . (∀ x5 . prim1 x5 x2∀ x6 . prim1 x6 x2prim1 (x4 x5 x6) x2)∀ x5 : ι → ι . (∀ x6 . prim1 x6 x2prim1 (x5 x6) x2)x1 (21805.. x2 x3 x4 x5))x1 x0
Theorem 8b6c0.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . (∀ x3 . prim1 x3 x0∀ x4 . prim1 x4 x0prim1 (x2 x3 x4) x0)∀ x3 : ι → ι . (∀ x4 . prim1 x4 x0prim1 (x3 x4) x0)0df03.. (21805.. x0 x1 x2 x3) (proof)
Theorem 22793.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . 0df03.. (21805.. x0 x1 x2 x3)∀ x4 . prim1 x4 x0∀ x5 . prim1 x5 x0prim1 (x2 x4 x5) x0 (proof)
Theorem 349ee.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . 0df03.. (21805.. x0 x1 x2 x3)∀ x4 . prim1 x4 x0prim1 (x3 x4) x0 (proof)
Known iff_refl : ∀ x0 : ο . iff x0 x0
Theorem 6bc8d.. : ∀ x0 . 0df03.. x0x0 = 21805.. (f482f.. x0 4a7ef..) (decode_c (f482f.. x0 (4ae4a.. 4a7ef..))) (e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (proof)
Definition 2d48d.. := λ x0 . λ x1 : ι → ((ι → ο) → ο)(ι → ι → ι)(ι → ι) → ι . x1 (f482f.. x0 4a7ef..) (decode_c (f482f.. x0 (4ae4a.. 4a7ef..))) (e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))))
Theorem 17011.. : ∀ x0 : ι → ((ι → ο) → ο)(ι → ι → ι)(ι → ι) → ι . ∀ x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 : ι → ι . (∀ x5 : (ι → ο) → ο . (∀ x6 : ι → ο . (∀ x7 . x6 x7prim1 x7 x1)iff (x2 x6) (x5 x6))∀ x6 : ι → ι → ι . (∀ x7 . prim1 x7 x1∀ x8 . prim1 x8 x1x3 x7 x8 = x6 x7 x8)∀ x7 : ι → ι . (∀ x8 . prim1 x8 x1x4 x8 = x7 x8)x0 x1 x5 x6 x7 = x0 x1 x2 x3 x4)2d48d.. (21805.. x1 x2 x3 x4) x0 = x0 x1 x2 x3 x4 (proof)
Definition bc70e.. := λ x0 . λ x1 : ι → ((ι → ο) → ο)(ι → ι → ι)(ι → ι) → ο . x1 (f482f.. x0 4a7ef..) (decode_c (f482f.. x0 (4ae4a.. 4a7ef..))) (e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))))
Theorem 9aeec.. : ∀ x0 : ι → ((ι → ο) → ο)(ι → ι → ι)(ι → ι) → ο . ∀ x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 : ι → ι . (∀ x5 : (ι → ο) → ο . (∀ x6 : ι → ο . (∀ x7 . x6 x7prim1 x7 x1)iff (x2 x6) (x5 x6))∀ x6 : ι → ι → ι . (∀ x7 . prim1 x7 x1∀ x8 . prim1 x8 x1x3 x7 x8 = x6 x7 x8)∀ x7 : ι → ι . (∀ x8 . prim1 x8 x1x4 x8 = x7 x8)x0 x1 x5 x6 x7 = x0 x1 x2 x3 x4)bc70e.. (21805.. x1 x2 x3 x4) x0 = x0 x1 x2 x3 x4 (proof)
Param d2155.. : ι(ιιο) → ι
Definition dd9fd.. := λ x0 . λ x1 : (ι → ο) → ο . λ x2 : ι → ι → ι . λ x3 : ι → ι → ο . 0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (λ x4 . If_i (x4 = 4a7ef..) x0 (If_i (x4 = 4ae4a.. 4a7ef..) (e0e40.. x0 x1) (If_i (x4 = 4ae4a.. (4ae4a.. 4a7ef..)) (eb53d.. x0 x2) (d2155.. x0 x3))))
Theorem 6b3af.. : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 : ι → ι → ο . x0 = dd9fd.. x1 x2 x3 x4x1 = f482f.. x0 4a7ef.. (proof)
Theorem 39c7e.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 x4 : ι → ι → ο . x4 x0 (f482f.. (dd9fd.. x0 x1 x2 x3) 4a7ef..)x4 (f482f.. (dd9fd.. x0 x1 x2 x3) 4a7ef..) x0 (proof)
Theorem 40117.. : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 : ι → ι → ο . x0 = dd9fd.. x1 x2 x3 x4∀ x5 : ι → ο . (∀ x6 . x5 x6prim1 x6 x1)x2 x5 = decode_c (f482f.. x0 (4ae4a.. 4a7ef..)) x5 (proof)
Theorem db256.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 : ι → ο . (∀ x5 . x4 x5prim1 x5 x0)x1 x4 = decode_c (f482f.. (dd9fd.. x0 x1 x2 x3) (4ae4a.. 4a7ef..)) x4 (proof)
Theorem f7540.. : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 : ι → ι → ο . x0 = dd9fd.. x1 x2 x3 x4∀ x5 . prim1 x5 x1∀ x6 . prim1 x6 x1x3 x5 x6 = e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..))) x5 x6 (proof)
Theorem eac17.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 . prim1 x4 x0∀ x5 . prim1 x5 x0x2 x4 x5 = e3162.. (f482f.. (dd9fd.. x0 x1 x2 x3) (4ae4a.. (4ae4a.. 4a7ef..))) x4 x5 (proof)
Param 2b2e3.. : ιιιο
Known 67416.. : ∀ x0 . ∀ x1 : ι → ι → ο . ∀ x2 . prim1 x2 x0∀ x3 . prim1 x3 x02b2e3.. (d2155.. x0 x1) x2 x3 = x1 x2 x3
Theorem 3dc96.. : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 : ι → ι → ο . x0 = dd9fd.. x1 x2 x3 x4∀ x5 . prim1 x5 x1∀ x6 . prim1 x6 x1x4 x5 x6 = 2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x5 x6 (proof)
Theorem d0243.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 . prim1 x4 x0∀ x5 . prim1 x5 x0x3 x4 x5 = 2b2e3.. (f482f.. (dd9fd.. x0 x1 x2 x3) (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x4 x5 (proof)
Theorem dc2a8.. : ∀ x0 x1 . ∀ x2 x3 : (ι → ο) → ο . ∀ x4 x5 : ι → ι → ι . ∀ x6 x7 : ι → ι → ο . dd9fd.. x0 x2 x4 x6 = dd9fd.. x1 x3 x5 x7and (and (and (x0 = x1) (∀ x8 : ι → ο . (∀ x9 . x8 x9prim1 x9 x0)x2 x8 = x3 x8)) (∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0x4 x8 x9 = x5 x8 x9)) (∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0x6 x8 x9 = x7 x8 x9) (proof)
Known 62ef7.. : ∀ x0 . ∀ x1 x2 : ι → ι → ο . (∀ x3 . prim1 x3 x0∀ x4 . prim1 x4 x0iff (x1 x3 x4) (x2 x3 x4))d2155.. x0 x1 = d2155.. x0 x2
Theorem db71d.. : ∀ x0 . ∀ x1 x2 : (ι → ο) → ο . ∀ x3 x4 : ι → ι → ι . ∀ x5 x6 : ι → ι → ο . (∀ x7 : ι → ο . (∀ x8 . x7 x8prim1 x8 x0)iff (x1 x7) (x2 x7))(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0x3 x7 x8 = x4 x7 x8)(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0iff (x5 x7 x8) (x6 x7 x8))dd9fd.. x0 x1 x3 x5 = dd9fd.. x0 x2 x4 x6 (proof)
Definition 9ec2e.. := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : (ι → ο) → ο . ∀ x4 : ι → ι → ι . (∀ x5 . prim1 x5 x2∀ x6 . prim1 x6 x2prim1 (x4 x5 x6) x2)∀ x5 : ι → ι → ο . x1 (dd9fd.. x2 x3 x4 x5))x1 x0
Theorem be87a.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . (∀ x3 . prim1 x3 x0∀ x4 . prim1 x4 x0prim1 (x2 x3 x4) x0)∀ x3 : ι → ι → ο . 9ec2e.. (dd9fd.. x0 x1 x2 x3) (proof)
Theorem 36ae3.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι → ο . 9ec2e.. (dd9fd.. x0 x1 x2 x3)∀ x4 . prim1 x4 x0∀ x5 . prim1 x5 x0prim1 (x2 x4 x5) x0 (proof)
Theorem 29de5.. : ∀ x0 . 9ec2e.. x0x0 = dd9fd.. (f482f.. x0 4a7ef..) (decode_c (f482f.. x0 (4ae4a.. 4a7ef..))) (e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (proof)
Definition 357b4.. := λ x0 . λ x1 : ι → ((ι → ο) → ο)(ι → ι → ι)(ι → ι → ο) → ι . x1 (f482f.. x0 4a7ef..) (decode_c (f482f.. x0 (4ae4a.. 4a7ef..))) (e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))))
Theorem 4fdde.. : ∀ x0 : ι → ((ι → ο) → ο)(ι → ι → ι)(ι → ι → ο) → ι . ∀ x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 : ι → ι → ο . (∀ x5 : (ι → ο) → ο . (∀ x6 : ι → ο . (∀ x7 . x6 x7prim1 x7 x1)iff (x2 x6) (x5 x6))∀ x6 : ι → ι → ι . (∀ x7 . prim1 x7 x1∀ x8 . prim1 x8 x1x3 x7 x8 = x6 x7 x8)∀ x7 : ι → ι → ο . (∀ x8 . prim1 x8 x1∀ x9 . prim1 x9 x1iff (x4 x8 x9) (x7 x8 x9))x0 x1 x5 x6 x7 = x0 x1 x2 x3 x4)357b4.. (dd9fd.. x1 x2 x3 x4) x0 = x0 x1 x2 x3 x4 (proof)
Definition 9e417.. := λ x0 . λ x1 : ι → ((ι → ο) → ο)(ι → ι → ι)(ι → ι → ο) → ο . x1 (f482f.. x0 4a7ef..) (decode_c (f482f.. x0 (4ae4a.. 4a7ef..))) (e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))))
Theorem 9dc85.. : ∀ x0 : ι → ((ι → ο) → ο)(ι → ι → ι)(ι → ι → ο) → ο . ∀ x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 : ι → ι → ο . (∀ x5 : (ι → ο) → ο . (∀ x6 : ι → ο . (∀ x7 . x6 x7prim1 x7 x1)iff (x2 x6) (x5 x6))∀ x6 : ι → ι → ι . (∀ x7 . prim1 x7 x1∀ x8 . prim1 x8 x1x3 x7 x8 = x6 x7 x8)∀ x7 : ι → ι → ο . (∀ x8 . prim1 x8 x1∀ x9 . prim1 x9 x1iff (x4 x8 x9) (x7 x8 x9))x0 x1 x5 x6 x7 = x0 x1 x2 x3 x4)9e417.. (dd9fd.. x1 x2 x3 x4) x0 = x0 x1 x2 x3 x4 (proof)
Param 1216a.. : ι(ιο) → ι
Definition d7d7e.. := λ x0 . λ x1 : (ι → ο) → ο . λ x2 : ι → ι → ι . λ x3 : ι → ο . 0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (λ x4 . If_i (x4 = 4a7ef..) x0 (If_i (x4 = 4ae4a.. 4a7ef..) (e0e40.. x0 x1) (If_i (x4 = 4ae4a.. (4ae4a.. 4a7ef..)) (eb53d.. x0 x2) (1216a.. x0 x3))))
Theorem 25248.. : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 : ι → ο . x0 = d7d7e.. x1 x2 x3 x4x1 = f482f.. x0 4a7ef.. (proof)
Theorem fd9e5.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ο . x0 = f482f.. (d7d7e.. x0 x1 x2 x3) 4a7ef.. (proof)
Theorem b6ec5.. : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 : ι → ο . x0 = d7d7e.. x1 x2 x3 x4∀ x5 : ι → ο . (∀ x6 . x5 x6prim1 x6 x1)x2 x5 = decode_c (f482f.. x0 (4ae4a.. 4a7ef..)) x5 (proof)
Theorem a0c42.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 x4 : ι → ο . (∀ x5 . x4 x5prim1 x5 x0)x1 x4 = decode_c (f482f.. (d7d7e.. x0 x1 x2 x3) (4ae4a.. 4a7ef..)) x4 (proof)
Theorem 6c7ce.. : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 : ι → ο . x0 = d7d7e.. x1 x2 x3 x4∀ x5 . prim1 x5 x1∀ x6 . prim1 x6 x1x3 x5 x6 = e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..))) x5 x6 (proof)
Theorem e5de9.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ο . ∀ x4 . prim1 x4 x0∀ x5 . prim1 x5 x0x2 x4 x5 = e3162.. (f482f.. (d7d7e.. x0 x1 x2 x3) (4ae4a.. (4ae4a.. 4a7ef..))) x4 x5 (proof)
Param decode_p : ιιο
Known 931fe.. : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . prim1 x2 x0decode_p (1216a.. x0 x1) x2 = x1 x2
Theorem e2026.. : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 : ι → ο . x0 = d7d7e.. x1 x2 x3 x4∀ x5 . prim1 x5 x1x4 x5 = decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x5 (proof)
Theorem 8b266.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ο . ∀ x4 . prim1 x4 x0x3 x4 = decode_p (f482f.. (d7d7e.. x0 x1 x2 x3) (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x4 (proof)
Theorem bd187.. : ∀ x0 x1 . ∀ x2 x3 : (ι → ο) → ο . ∀ x4 x5 : ι → ι → ι . ∀ x6 x7 : ι → ο . d7d7e.. x0 x2 x4 x6 = d7d7e.. x1 x3 x5 x7and (and (and (x0 = x1) (∀ x8 : ι → ο . (∀ x9 . x8 x9prim1 x9 x0)x2 x8 = x3 x8)) (∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0x4 x8 x9 = x5 x8 x9)) (∀ x8 . prim1 x8 x0x6 x8 = x7 x8) (proof)
Known ee7ef.. : ∀ x0 . ∀ x1 x2 : ι → ο . (∀ x3 . prim1 x3 x0iff (x1 x3) (x2 x3))1216a.. x0 x1 = 1216a.. x0 x2
Theorem b3cb1.. : ∀ x0 . ∀ x1 x2 : (ι → ο) → ο . ∀ x3 x4 : ι → ι → ι . ∀ x5 x6 : ι → ο . (∀ x7 : ι → ο . (∀ x8 . x7 x8prim1 x8 x0)iff (x1 x7) (x2 x7))(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0x3 x7 x8 = x4 x7 x8)(∀ x7 . prim1 x7 x0iff (x5 x7) (x6 x7))d7d7e.. x0 x1 x3 x5 = d7d7e.. x0 x2 x4 x6 (proof)
Definition d7d76.. := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : (ι → ο) → ο . ∀ x4 : ι → ι → ι . (∀ x5 . prim1 x5 x2∀ x6 . prim1 x6 x2prim1 (x4 x5 x6) x2)∀ x5 : ι → ο . x1 (d7d7e.. x2 x3 x4 x5))x1 x0
Theorem 73971.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . (∀ x3 . prim1 x3 x0∀ x4 . prim1 x4 x0prim1 (x2 x3 x4) x0)∀ x3 : ι → ο . d7d76.. (d7d7e.. x0 x1 x2 x3) (proof)
Theorem deafe.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ο . d7d76.. (d7d7e.. x0 x1 x2 x3)∀ x4 . prim1 x4 x0∀ x5 . prim1 x5 x0prim1 (x2 x4 x5) x0 (proof)
Theorem 35a92.. : ∀ x0 . d7d76.. x0x0 = d7d7e.. (f482f.. x0 4a7ef..) (decode_c (f482f.. x0 (4ae4a.. 4a7ef..))) (e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (proof)
Definition 75035.. := λ x0 . λ x1 : ι → ((ι → ο) → ο)(ι → ι → ι)(ι → ο) → ι . x1 (f482f.. x0 4a7ef..) (decode_c (f482f.. x0 (4ae4a.. 4a7ef..))) (e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))))
Theorem 180e1.. : ∀ x0 : ι → ((ι → ο) → ο)(ι → ι → ι)(ι → ο) → ι . ∀ x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 : ι → ο . (∀ x5 : (ι → ο) → ο . (∀ x6 : ι → ο . (∀ x7 . x6 x7prim1 x7 x1)iff (x2 x6) (x5 x6))∀ x6 : ι → ι → ι . (∀ x7 . prim1 x7 x1∀ x8 . prim1 x8 x1x3 x7 x8 = x6 x7 x8)∀ x7 : ι → ο . (∀ x8 . prim1 x8 x1iff (x4 x8) (x7 x8))x0 x1 x5 x6 x7 = x0 x1 x2 x3 x4)75035.. (d7d7e.. x1 x2 x3 x4) x0 = x0 x1 x2 x3 x4 (proof)
Definition 80b53.. := λ x0 . λ x1 : ι → ((ι → ο) → ο)(ι → ι → ι)(ι → ο) → ο . x1 (f482f.. x0 4a7ef..) (decode_c (f482f.. x0 (4ae4a.. 4a7ef..))) (e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))))
Theorem 2e953.. : ∀ x0 : ι → ((ι → ο) → ο)(ι → ι → ι)(ι → ο) → ο . ∀ x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 : ι → ο . (∀ x5 : (ι → ο) → ο . (∀ x6 : ι → ο . (∀ x7 . x6 x7prim1 x7 x1)iff (x2 x6) (x5 x6))∀ x6 : ι → ι → ι . (∀ x7 . prim1 x7 x1∀ x8 . prim1 x8 x1x3 x7 x8 = x6 x7 x8)∀ x7 : ι → ο . (∀ x8 . prim1 x8 x1iff (x4 x8) (x7 x8))x0 x1 x5 x6 x7 = x0 x1 x2 x3 x4)80b53.. (d7d7e.. x1 x2 x3 x4) x0 = x0 x1 x2 x3 x4 (proof)
Definition e8b89.. := λ x0 . λ x1 : (ι → ο) → ο . λ x2 : ι → ι → ι . λ x3 . 0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (λ x4 . If_i (x4 = 4a7ef..) x0 (If_i (x4 = 4ae4a.. 4a7ef..) (e0e40.. x0 x1) (If_i (x4 = 4ae4a.. (4ae4a.. 4a7ef..)) (eb53d.. x0 x2) x3)))
Theorem c83d9.. : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 . x0 = e8b89.. x1 x2 x3 x4x1 = f482f.. x0 4a7ef.. (proof)
Theorem 64d90.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 . x0 = f482f.. (e8b89.. x0 x1 x2 x3) 4a7ef.. (proof)
Theorem 0ec69.. : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 . x0 = e8b89.. x1 x2 x3 x4∀ x5 : ι → ο . (∀ x6 . x5 x6prim1 x6 x1)x2 x5 = decode_c (f482f.. x0 (4ae4a.. 4a7ef..)) x5 (proof)
Theorem 27a5d.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 . ∀ x4 : ι → ο . (∀ x5 . x4 x5prim1 x5 x0)x1 x4 = decode_c (f482f.. (e8b89.. x0 x1 x2 x3) (4ae4a.. 4a7ef..)) x4 (proof)
Theorem c4fff.. : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 . x0 = e8b89.. x1 x2 x3 x4∀ x5 . prim1 x5 x1∀ x6 . prim1 x6 x1x3 x5 x6 = e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..))) x5 x6 (proof)
Theorem e9d56.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 x4 . prim1 x4 x0∀ x5 . prim1 x5 x0x2 x4 x5 = e3162.. (f482f.. (e8b89.. x0 x1 x2 x3) (4ae4a.. (4ae4a.. 4a7ef..))) x4 x5 (proof)
Theorem c24d1.. : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 . x0 = e8b89.. x1 x2 x3 x4x4 = f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) (proof)
Theorem b7c93.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 . x3 = f482f.. (e8b89.. x0 x1 x2 x3) (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) (proof)
Theorem eedd2.. : ∀ x0 x1 . ∀ x2 x3 : (ι → ο) → ο . ∀ x4 x5 : ι → ι → ι . ∀ x6 x7 . e8b89.. x0 x2 x4 x6 = e8b89.. x1 x3 x5 x7and (and (and (x0 = x1) (∀ x8 : ι → ο . (∀ x9 . x8 x9prim1 x9 x0)x2 x8 = x3 x8)) (∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0x4 x8 x9 = x5 x8 x9)) (x6 = x7) (proof)
Theorem 091be.. : ∀ x0 . ∀ x1 x2 : (ι → ο) → ο . ∀ x3 x4 : ι → ι → ι . ∀ x5 . (∀ x6 : ι → ο . (∀ x7 . x6 x7prim1 x7 x0)iff (x1 x6) (x2 x6))(∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 x0x3 x6 x7 = x4 x6 x7)e8b89.. x0 x1 x3 x5 = e8b89.. x0 x2 x4 x5 (proof)
Definition 0a1fb.. := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : (ι → ο) → ο . ∀ x4 : ι → ι → ι . (∀ x5 . prim1 x5 x2∀ x6 . prim1 x6 x2prim1 (x4 x5 x6) x2)∀ x5 . prim1 x5 x2x1 (e8b89.. x2 x3 x4 x5))x1 x0
Theorem 81997.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . (∀ x3 . prim1 x3 x0∀ x4 . prim1 x4 x0prim1 (x2 x3 x4) x0)∀ x3 . prim1 x3 x00a1fb.. (e8b89.. x0 x1 x2 x3) (proof)
Theorem b2f98.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 . 0a1fb.. (e8b89.. x0 x1 x2 x3)∀ x4 . prim1 x4 x0∀ x5 . prim1 x5 x0prim1 (x2 x4 x5) x0 (proof)
Theorem e8b51.. : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ι → ι . ∀ x3 . 0a1fb.. (e8b89.. x0 x1 x2 x3)prim1 x3 x0 (proof)
Theorem 4e54b.. : ∀ x0 . 0a1fb.. x0x0 = e8b89.. (f482f.. x0 4a7ef..) (decode_c (f482f.. x0 (4ae4a.. 4a7ef..))) (e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (proof)
Definition ac2cd.. := λ x0 . λ x1 : ι → ((ι → ο) → ο)(ι → ι → ι)ι → ι . x1 (f482f.. x0 4a7ef..) (decode_c (f482f.. x0 (4ae4a.. 4a7ef..))) (e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))
Theorem 720ab.. : ∀ x0 : ι → ((ι → ο) → ο)(ι → ι → ι)ι → ι . ∀ x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 . (∀ x5 : (ι → ο) → ο . (∀ x6 : ι → ο . (∀ x7 . x6 x7prim1 x7 x1)iff (x2 x6) (x5 x6))∀ x6 : ι → ι → ι . (∀ x7 . prim1 x7 x1∀ x8 . prim1 x8 x1x3 x7 x8 = x6 x7 x8)x0 x1 x5 x6 x4 = x0 x1 x2 x3 x4)ac2cd.. (e8b89.. x1 x2 x3 x4) x0 = x0 x1 x2 x3 x4 (proof)
Definition 43515.. := λ x0 . λ x1 : ι → ((ι → ο) → ο)(ι → ι → ι)ι → ο . x1 (f482f.. x0 4a7ef..) (decode_c (f482f.. x0 (4ae4a.. 4a7ef..))) (e3162.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))
Theorem 16888.. : ∀ x0 : ι → ((ι → ο) → ο)(ι → ι → ι)ι → ο . ∀ x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ι → ι . ∀ x4 . (∀ x5 : (ι → ο) → ο . (∀ x6 : ι → ο . (∀ x7 . x6 x7prim1 x7 x1)iff (x2 x6) (x5 x6))∀ x6 : ι → ι → ι . (∀ x7 . prim1 x7 x1∀ x8 . prim1 x8 x1x3 x7 x8 = x6 x7 x8)x0 x1 x5 x6 x4 = x0 x1 x2 x3 x4)43515.. (e8b89.. x1 x2 x3 x4) x0 = x0 x1 x2 x3 x4 (proof)

previous assets