Search for blocks/addresses/...
Proofgold Address
address
PUQQ9rAHoHDqoDrBn4uwLS7d5ocBpTmr3UC
total
0
mg
-
conjpub
-
current assets
7ab11..
/
456e5..
bday:
30111
doc published by
PrQUS..
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
inj
inj
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
71c93..
injI
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
⟶
inj
x0
x1
x2
(proof)
Param
nat_p
nat_p
:
ι
→
ο
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Known
add_nat_com
add_nat_com
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
add_nat
x0
x1
=
add_nat
x1
x0
Known
nat_p_trans
nat_p_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
nat_p
x1
Known
85b3a..
add_nat_In_R
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
nat_p
x2
⟶
add_nat
x1
x2
∈
add_nat
x0
x2
Theorem
eaa26..
add_nat_In_L
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
∀ x2 .
x2
∈
x1
⟶
add_nat
x0
x2
∈
add_nat
x0
x1
(proof)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
ordinal
ordinal
:
ι
→
ο
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
ordinal_In_Or_Subq
ordinal_In_Or_Subq
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
x0
∈
x1
)
(
x1
⊆
x0
)
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
nat_trans
nat_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Known
add_nat_p
add_nat_p
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
add_nat
x0
x1
)
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Known
Subq_ref
Subq_ref
:
∀ x0 .
x0
⊆
x0
Theorem
d59a0..
add_nat_Subq_R
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
x0
⊆
x1
⟶
∀ x2 .
nat_p
x2
⟶
add_nat
x0
x2
⊆
add_nat
x1
x2
(proof)
Theorem
586cf..
add_nat_Subq_L
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
∀ x2 .
nat_p
x2
⟶
x1
⊆
x2
⟶
add_nat
x0
x1
⊆
add_nat
x0
x2
(proof)
Param
ordsucc
ordsucc
:
ι
→
ι
Known
nat_ind
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
add_nat_0R
add_nat_0R
:
∀ x0 .
add_nat
x0
0
=
x0
Known
add_nat_SR
add_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
(
ordsucc
x1
)
=
ordsucc
(
add_nat
x0
x1
)
Known
ordsucc_inj
ordsucc_inj
:
∀ x0 x1 .
ordsucc
x0
=
ordsucc
x1
⟶
x0
=
x1
Theorem
1c3ee..
add_nat_cancel_R
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
∀ x2 .
nat_p
x2
⟶
add_nat
x0
x2
=
add_nat
x1
x2
⟶
x0
=
x1
(proof)
Param
mul_nat
mul_nat
:
ι
→
ι
→
ι
Known
nat_inv_impred
nat_inv_impred
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Definition
False
False
:=
∀ x0 : ο .
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Known
In_no2cycle
In_no2cycle
:
∀ x0 x1 .
x0
∈
x1
⟶
x1
∈
x0
⟶
False
Known
In_0_1
In_0_1
:
0
∈
1
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Known
mul_nat_SR
mul_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
mul_nat
x0
(
ordsucc
x1
)
=
add_nat
x0
(
mul_nat
x0
x1
)
Known
nat_ordsucc
nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
ordsucc
x0
)
Known
mul_nat_p
mul_nat_p
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
mul_nat
x0
x1
)
Known
mul_nat_SL
mul_nat_SL
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
mul_nat
(
ordsucc
x0
)
x1
=
add_nat
(
mul_nat
x0
x1
)
x1
Known
nat_0_in_ordsucc
nat_0_in_ordsucc
:
∀ x0 .
nat_p
x0
⟶
0
∈
ordsucc
x0
Theorem
5d96a..
mul_nat_0m_1n_In
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
0
∈
x0
⟶
1
∈
x1
⟶
x0
∈
mul_nat
x0
x1
(proof)
Known
Subq_tra
Subq_tra
:
∀ x0 x1 x2 .
x0
⊆
x1
⟶
x1
⊆
x2
⟶
x0
⊆
x2
Known
df9cc..
mul_nat_Subq_L
:
∀ x0 x1 .
nat_p
x0
⟶
nat_p
x1
⟶
x0
⊆
x1
⟶
∀ x2 .
nat_p
x2
⟶
mul_nat
x2
x0
⊆
mul_nat
x2
x1
Known
4324d..
mul_nat_Subq_R
:
∀ x0 x1 .
nat_p
x0
⟶
nat_p
x1
⟶
x0
⊆
x1
⟶
∀ x2 .
nat_p
x2
⟶
mul_nat
x0
x2
⊆
mul_nat
x1
x2
Theorem
ad387..
:
∀ x0 x1 .
nat_p
x0
⟶
nat_p
x1
⟶
x0
⊆
x1
⟶
mul_nat
x0
x0
⊆
mul_nat
x1
x1
(proof)
Param
exp_nat
exp_nat
:
ι
→
ι
→
ι
Known
caaf4..
exp_nat_S
:
∀ x0 x1 .
nat_p
x1
⟶
exp_nat
x0
(
ordsucc
x1
)
=
mul_nat
x0
(
exp_nat
x0
x1
)
Known
nat_1
nat_1
:
nat_p
1
Known
3e9f7..
exp_nat_1
:
∀ x0 .
exp_nat
x0
1
=
x0
Theorem
81ebf..
:
∀ x0 .
exp_nat
x0
2
=
mul_nat
x0
x0
(proof)
Definition
bij
bij
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
Definition
equip
equip
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
bij
x0
x1
x3
⟶
x2
)
⟶
x2
Known
equip_0_Empty
equip_0_Empty
:
∀ x0 .
equip
x0
0
⟶
x0
=
0
Known
856b4..
exp_nat_0
:
∀ x0 .
exp_nat
x0
0
=
1
Param
Sing
Sing
:
ι
→
ι
Known
Power_0_Sing_0
Power_0_Sing_0
:
prim4
0
=
Sing
0
Known
eq_1_Sing0
eq_1_Sing0
:
1
=
Sing
0
Known
equip_ref
equip_ref
:
∀ x0 .
equip
x0
x0
Known
mul_nat_com
mul_nat_com
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
mul_nat
x0
x1
=
mul_nat
x1
x0
Known
nat_2
nat_2
:
nat_p
2
Known
add_nat_1_1_2
add_nat_1_1_2
:
add_nat
1
1
=
2
Known
mul_add_nat_distrL
mul_add_nat_distrL
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
∀ x2 .
nat_p
x2
⟶
mul_nat
x0
(
add_nat
x1
x2
)
=
add_nat
(
mul_nat
x0
x1
)
(
mul_nat
x0
x2
)
Known
mul_nat_1R
mul_nat_1R
:
∀ x0 .
mul_nat
x0
1
=
x0
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Known
ordsuccI2
ordsuccI2
:
∀ x0 .
x0
∈
ordsucc
x0
Param
setminus
setminus
:
ι
→
ι
→
ι
Known
9c223..
equip_ordsucc_remove1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
equip
x0
(
ordsucc
x1
)
⟶
equip
(
setminus
x0
(
Sing
x2
)
)
x1
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Known
bijI
bijI
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
⟶
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
bij
x0
x1
x2
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
If_i_1
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Known
PowerI
PowerI
:
∀ x0 x1 .
x1
⊆
x0
⟶
x1
∈
prim4
x0
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Known
setminusI
setminusI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
nIn
x2
x1
⟶
x2
∈
setminus
x0
x1
Known
PowerE
PowerE
:
∀ x0 x1 .
x1
∈
prim4
x0
⟶
x1
⊆
x0
Known
If_i_0
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Known
add_nat_Subq_L
add_nat_Subq_R
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
x0
⊆
add_nat
x0
x1
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
setminusE1
setminusE1
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
x2
∈
x0
Known
setminusE2
setminusE2
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
nIn
x2
x1
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Known
nat_Subq_add_ex
nat_Subq_add_ex
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
x0
⊆
x1
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
nat_p
x3
)
(
x1
=
add_nat
x3
x0
)
⟶
x2
)
⟶
x2
Param
binunion
binunion
:
ι
→
ι
→
ι
Known
binunion_Subq_min
binunion_Subq_min
:
∀ x0 x1 x2 .
x0
⊆
x2
⟶
x1
⊆
x2
⟶
binunion
x0
x1
⊆
x2
Known
setminus_Subq
setminus_Subq
:
∀ x0 x1 .
setminus
x0
x1
⊆
x0
Known
binunionI2
binunionI2
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
x2
∈
binunion
x0
x1
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
binunionI1
binunionI1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
binunion
x0
x1
Known
4f402..
exp_nat_p
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
exp_nat
x0
x1
)
Theorem
b4d9c..
equip_finite_Power
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
equip
x1
x0
⟶
equip
(
prim4
x1
)
(
exp_nat
2
x0
)
(proof)
Param
infinite
infinite
:
ι
→
ο
Param
omega
omega
:
ι
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
ordinal_trichotomy_or_impred
ordinal_trichotomy_or_impred
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 : ο .
(
x0
∈
x1
⟶
x2
)
⟶
(
x0
=
x1
⟶
x2
)
⟶
(
x1
∈
x0
⟶
x2
)
⟶
x2
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Known
omega_ordsucc
omega_ordsucc
:
∀ x0 .
x0
∈
omega
⟶
ordsucc
x0
∈
omega
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
ordinal_ordsucc_In_Subq
ordinal_ordsucc_In_Subq
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordsucc
x1
⊆
x0
Theorem
c1cc5..
infiniteRamsey_lem
:
∀ x0 .
∀ x1 x2 x3 :
ι → ι
.
infinite
x0
⟶
(
∀ x4 .
x4
⊆
x0
⟶
infinite
x4
⟶
and
(
x1
x4
⊆
x4
)
(
infinite
(
x1
x4
)
)
)
⟶
(
∀ x4 .
x4
⊆
x0
⟶
infinite
x4
⟶
and
(
x2
x4
∈
x4
)
(
nIn
(
x2
x4
)
(
x1
x4
)
)
)
⟶
x3
0
=
x1
x0
⟶
(
∀ x4 .
nat_p
x4
⟶
x3
(
ordsucc
x4
)
=
x1
(
x3
x4
)
)
⟶
and
(
and
(
∀ x4 .
nat_p
x4
⟶
and
(
x3
x4
⊆
x0
)
(
infinite
(
x3
x4
)
)
)
(
∀ x4 .
x4
∈
omega
⟶
∀ x5 .
x5
∈
omega
⟶
x4
⊆
x5
⟶
x3
x5
⊆
x3
x4
)
)
(
∀ x4 .
x4
∈
omega
⟶
∀ x5 .
x5
∈
omega
⟶
x2
(
x3
x4
)
=
x2
(
x3
x5
)
⟶
x4
=
x5
)
(proof)
Param
SNo
SNo
:
ι
→
ο
Param
int
int
:
ι
Param
mul_SNo
mul_SNo
:
ι
→
ι
→
ι
Definition
divides_int
divides_int
:=
λ x0 x1 .
and
(
and
(
x0
∈
int
)
(
x1
∈
int
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
int
)
(
mul_SNo
x0
x3
=
x1
)
⟶
x2
)
⟶
x2
)
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Param
minus_SNo
minus_SNo
:
ι
→
ι
Known
add_SNo_com
add_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
x1
=
add_SNo
x1
x0
Known
SNo_minus_SNo
SNo_minus_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
minus_SNo
x0
)
Known
minus_SNo_invol
minus_SNo_invol
:
∀ x0 .
SNo
x0
⟶
minus_SNo
(
minus_SNo
x0
)
=
x0
Known
minus_add_SNo_distr
minus_add_SNo_distr
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
minus_SNo
(
add_SNo
x0
x1
)
=
add_SNo
(
minus_SNo
x0
)
(
minus_SNo
x1
)
Known
divides_int_minus_SNo
divides_int_minus_SNo
:
∀ x0 x1 .
divides_int
x0
x1
⟶
divides_int
x0
(
minus_SNo
x1
)
Theorem
03b8a..
:
∀ x0 x1 x2 .
SNo
x1
⟶
SNo
x2
⟶
divides_int
x0
(
add_SNo
x1
(
minus_SNo
x2
)
)
⟶
divides_int
x0
(
add_SNo
x2
(
minus_SNo
x1
)
)
(proof)
Definition
divides_nat
divides_nat
:=
λ x0 x1 .
and
(
and
(
x0
∈
omega
)
(
x1
∈
omega
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
omega
)
(
mul_nat
x0
x3
=
x1
)
⟶
x2
)
⟶
x2
)
Definition
prime_nat
prime_nat
:=
λ x0 .
and
(
and
(
x0
∈
omega
)
(
1
∈
x0
)
)
(
∀ x1 .
x1
∈
omega
⟶
divides_nat
x1
x0
⟶
or
(
x1
=
1
)
(
x1
=
x0
)
)
Param
SNoLt
SNoLt
:
ι
→
ι
→
ο
Known
SNoLt_irref
SNoLt_irref
:
∀ x0 .
not
(
SNoLt
x0
x0
)
Param
SNoLe
SNoLe
:
ι
→
ι
→
ο
Known
SNoLtLe_tra
SNoLtLe_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x1
⟶
SNoLe
x1
x2
⟶
SNoLt
x0
x2
Known
SNo_1
SNo_1
:
SNo
1
Known
nat_p_SNo
nat_p_SNo
:
∀ x0 .
nat_p
x0
⟶
SNo
x0
Known
ordinal_In_SNoLt
ordinal_In_SNoLt
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
SNoLt
x1
x0
Known
divides_int_pos_Le
divides_int_pos_Le
:
∀ x0 x1 .
divides_int
x0
x1
⟶
SNoLt
0
x1
⟶
SNoLe
x0
x1
Known
SNoLt_0_1
SNoLt_0_1
:
SNoLt
0
1
Theorem
10be6..
prime_not_divides_int_1
:
∀ x0 .
prime_nat
x0
⟶
not
(
divides_int
x0
1
)
(proof)
Param
nat_primrec
nat_primrec
:
ι
→
(
ι
→
ι
→
ι
) →
ι
→
ι
Definition
05ecb..
Pi_SNo
:=
λ x0 :
ι → ι
.
nat_primrec
1
(
λ x1 x2 .
mul_SNo
x2
(
x0
x1
)
)
Known
nat_primrec_0
nat_primrec_0
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
nat_primrec
x0
x1
0
=
x0
Theorem
b6e18..
Pi_SNo_0
:
∀ x0 :
ι → ι
.
05ecb..
x0
0
=
1
(proof)
Known
nat_primrec_S
nat_primrec_S
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
nat_p
x2
⟶
nat_primrec
x0
x1
(
ordsucc
x2
)
=
x1
x2
(
nat_primrec
x0
x1
x2
)
Theorem
33475..
Pi_SNo_S
:
∀ x0 :
ι → ι
.
∀ x1 .
nat_p
x1
⟶
05ecb..
x0
(
ordsucc
x1
)
=
mul_SNo
(
05ecb..
x0
x1
)
(
x0
x1
)
(proof)
Known
mul_SNo_In_omega
mul_SNo_In_omega
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
mul_SNo
x0
x1
∈
omega
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Theorem
63bfe..
Pi_SNo_In_omega
:
∀ x0 :
ι → ι
.
∀ x1 .
nat_p
x1
⟶
(
∀ x2 .
x2
∈
x1
⟶
x0
x2
∈
omega
)
⟶
05ecb..
x0
x1
∈
omega
(proof)
Known
Subq_omega_int
Subq_omega_int
:
omega
⊆
int
Known
int_mul_SNo
int_mul_SNo
:
∀ x0 .
x0
∈
int
⟶
∀ x1 .
x1
∈
int
⟶
mul_SNo
x0
x1
∈
int
Theorem
22c84..
Pi_SNo_In_int
:
∀ x0 :
ι → ι
.
∀ x1 .
nat_p
x1
⟶
(
∀ x2 .
x2
∈
x1
⟶
x0
x2
∈
int
)
⟶
05ecb..
x0
x1
∈
int
(proof)
Known
divides_int_divides_nat
divides_int_divides_nat
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
divides_int
x0
x1
⟶
divides_nat
x0
x1
Theorem
d07df..
divides_int_prime_nat_eq
:
∀ x0 x1 .
prime_nat
x0
⟶
prime_nat
x1
⟶
divides_int
x0
x1
⟶
x0
=
x1
(proof)
Known
Euclid_lemma
Euclid_lemma
:
∀ x0 .
prime_nat
x0
⟶
∀ x1 .
x1
∈
int
⟶
∀ x2 .
x2
∈
int
⟶
divides_int
x0
(
mul_SNo
x1
x2
)
⟶
or
(
divides_int
x0
x1
)
(
divides_int
x0
x2
)
Theorem
2326d..
Euclid_lemma_Pi_SNo
:
∀ x0 :
ι → ι
.
∀ x1 .
prime_nat
x1
⟶
∀ x2 .
nat_p
x2
⟶
(
∀ x3 .
x3
∈
x2
⟶
x0
x3
∈
int
)
⟶
divides_int
x1
(
05ecb..
x0
x2
)
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x2
)
(
divides_int
x1
(
x0
x4
)
)
⟶
x3
)
⟶
x3
(proof)
Known
mul_nat_mul_SNo
mul_nat_mul_SNo
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
mul_nat
x0
x1
=
mul_SNo
x0
x1
Theorem
a297e..
divides_nat_mul_SNo_R
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
divides_nat
x0
(
mul_SNo
x0
x1
)
(proof)
Known
mul_SNo_com
mul_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
x1
=
mul_SNo
x1
x0
Known
omega_SNo
omega_SNo
:
∀ x0 .
x0
∈
omega
⟶
SNo
x0
Theorem
a0cc9..
divides_nat_mul_SNo_L
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
divides_nat
x1
(
mul_SNo
x0
x1
)
(proof)
Known
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Known
e4e38..
divides_nat_tra
:
∀ x0 x1 x2 .
divides_nat
x0
x1
⟶
divides_nat
x1
x2
⟶
divides_nat
x0
x2
Theorem
3899c..
Pi_SNo_divides
:
∀ x0 :
ι → ι
.
∀ x1 .
nat_p
x1
⟶
(
∀ x2 .
x2
∈
x1
⟶
x0
x2
∈
omega
)
⟶
∀ x2 .
x2
∈
x1
⟶
divides_nat
(
x0
x2
)
(
05ecb..
x0
x1
)
(proof)
Theorem
9a5d6..
Pi_SNo_eq
:
∀ x0 x1 :
ι → ι
.
∀ x2 .
nat_p
x2
⟶
(
∀ x3 .
x3
∈
x2
⟶
x0
x3
=
x1
x3
)
⟶
05ecb..
x0
x2
=
05ecb..
x1
x2
(proof)
Definition
168aa..
nonincrfinseq
:=
λ x0 :
ι → ο
.
λ x1 .
λ x2 :
ι → ι
.
∀ x3 .
x3
∈
x1
⟶
and
(
x0
(
x2
x3
)
)
(
∀ x4 .
x4
∈
x3
⟶
SNoLe
(
x2
x3
)
(
x2
x4
)
)
Known
nat_complete_ind
nat_complete_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
nat_p
x1
⟶
(
∀ x2 .
x2
∈
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
nat_0
nat_0
:
nat_p
0
Known
Empty_eq
Empty_eq
:
∀ x0 .
(
∀ x1 .
nIn
x1
x0
)
⟶
x0
=
0
Known
divides_nat_divides_int
divides_nat_divides_int
:
∀ x0 x1 .
divides_nat
x0
x1
⟶
divides_int
x0
x1
Known
least_ordinal_ex
least_ordinal_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
and
(
ordinal
x2
)
(
x0
x2
)
⟶
x1
)
⟶
x1
)
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
and
(
ordinal
x2
)
(
x0
x2
)
)
(
∀ x3 .
x3
∈
x2
⟶
not
(
x0
x3
)
)
⟶
x1
)
⟶
x1
Known
prime_nat_divisor_ex
prime_nat_divisor_ex
:
∀ x0 .
nat_p
x0
⟶
1
∈
x0
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
prime_nat
x2
)
(
divides_nat
x2
x0
)
⟶
x1
)
⟶
x1
Known
cases_1
cases_1
:
∀ x0 .
x0
∈
1
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
x0
Known
ordinal_SNoLt_In
ordinal_SNoLt_In
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
SNoLt
x0
x1
⟶
x0
∈
x1
Known
mul_SNo_oneR
mul_SNo_oneR
:
∀ x0 .
SNo
x0
⟶
mul_SNo
x0
1
=
x0
Known
pos_mul_SNo_Lt
pos_mul_SNo_Lt
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNoLt
0
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x1
x2
⟶
SNoLt
(
mul_SNo
x0
x1
)
(
mul_SNo
x0
x2
)
Known
ordinal_Empty
ordinal_Empty
:
ordinal
0
Known
SNoLtLe_or
SNoLtLe_or
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
or
(
SNoLt
x0
x1
)
(
SNoLe
x1
x0
)
Known
nat_inv
nat_inv
:
∀ x0 .
nat_p
x0
⟶
or
(
x0
=
0
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
nat_p
x2
)
(
x0
=
ordsucc
x2
)
⟶
x1
)
⟶
x1
)
Known
mul_SNo_nonzero_cancel
mul_SNo_nonzero_cancel_L
:
∀ x0 x1 x2 .
SNo
x0
⟶
(
x0
=
0
⟶
∀ x3 : ο .
x3
)
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
x1
=
mul_SNo
x0
x2
⟶
x1
=
x2
Known
SNoLt_tra
SNoLt_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x1
⟶
SNoLt
x1
x2
⟶
SNoLt
x0
x2
Known
SNo_0
SNo_0
:
SNo
0
Known
SNoLt_trichotomy_or_impred
SNoLt_trichotomy_or_impred
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
∀ x2 : ο .
(
SNoLt
x0
x1
⟶
x2
)
⟶
(
x0
=
x1
⟶
x2
)
⟶
(
SNoLt
x1
x0
⟶
x2
)
⟶
x2
Known
SNoLeE
SNoLeE
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLe
x0
x1
⟶
or
(
SNoLt
x0
x1
)
(
x0
=
x1
)
Known
omega_nonneg
omega_nonneg
:
∀ x0 .
x0
∈
omega
⟶
SNoLe
0
x0
Known
mul_SNo_zeroR
mul_SNo_zeroR
:
∀ x0 .
SNo
x0
⟶
mul_SNo
x0
0
=
0
Theorem
a96cd..
prime_factorization_ex_uniq
:
∀ x0 .
nat_p
x0
⟶
0
∈
x0
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
omega
)
(
∀ x3 : ο .
(
∀ x4 :
ι → ι
.
and
(
and
(
168aa..
prime_nat
x2
x4
)
(
05ecb..
x4
x2
=
x0
)
)
(
∀ x5 .
x5
∈
omega
⟶
∀ x6 :
ι → ι
.
168aa..
prime_nat
x5
x6
⟶
05ecb..
x6
x5
=
x0
⟶
and
(
x5
=
x2
)
(
∀ x7 .
x7
∈
x2
⟶
x6
x7
=
x4
x7
)
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
(proof)
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
nat_ordsucc_in_ordsucc
nat_ordsucc_in_ordsucc
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordsucc
x1
∈
ordsucc
x0
Theorem
16680..
nat_le2_cases
:
∀ x0 .
nat_p
x0
⟶
x0
⊆
2
⟶
or
(
or
(
x0
=
0
)
(
x0
=
1
)
)
(
x0
=
2
)
(proof)
Known
2bbf0..
mul_nat_0_or_Subq
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
or
(
x1
=
0
)
(
x0
⊆
mul_nat
x0
x1
)
Known
neq_2_0
neq_2_0
:
2
=
0
⟶
∀ x0 : ο .
x0
Known
mul_nat_0R
mul_nat_0R
:
∀ x0 .
mul_nat
x0
0
=
0
Known
mul_nat_0L
mul_nat_0L
:
∀ x0 .
nat_p
x0
⟶
mul_nat
0
x0
=
0
Theorem
4e2fe..
prime_nat_2_lem
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
mul_nat
x0
x1
=
2
⟶
or
(
x0
=
1
)
(
x0
=
2
)
(proof)
Known
In_1_2
In_1_2
:
1
∈
2
Theorem
9dc41..
prime_nat_2
:
prime_nat
2
(proof)
Known
mul_SNo_distrL
mul_SNo_distrL
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
(
mul_SNo
x0
x1
)
(
mul_SNo
x0
x2
)
Known
SNo_2
SNo_2
:
SNo
2
Known
int_SNo
int_SNo
:
∀ x0 .
x0
∈
int
⟶
SNo
x0
Known
mul_SNo_minus_distrR
mul_minus_SNo_distrR
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
(
minus_SNo
x1
)
=
minus_SNo
(
mul_SNo
x0
x1
)
Known
add_SNo_cancel_L
add_SNo_cancel_L
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
x1
=
add_SNo
x0
x2
⟶
x1
=
x2
Known
SNo_add_SNo
SNo_add_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
Known
add_SNo_rotate_3_1
add_SNo_rotate_3_1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
x2
(
add_SNo
x0
x1
)
Known
add_SNo_minus_L2
add_SNo_minus_L2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
(
minus_SNo
x0
)
(
add_SNo
x0
x1
)
=
x1
Known
divides_int_mul_SNo_L
divides_int_mul_SNo_L
:
∀ x0 x1 x2 .
x2
∈
int
⟶
divides_int
x0
x1
⟶
divides_int
x0
(
mul_SNo
x1
x2
)
Known
int_add_SNo
int_add_SNo
:
∀ x0 .
x0
∈
int
⟶
∀ x1 .
x1
∈
int
⟶
add_SNo
x0
x1
∈
int
Known
int_minus_SNo
int_minus_SNo
:
∀ x0 .
x0
∈
int
⟶
minus_SNo
x0
∈
int
Known
divides_int_ref
divides_int_ref
:
∀ x0 .
x0
∈
int
⟶
divides_int
x0
x0
Known
SNo_mul_SNo
SNo_mul_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
mul_SNo
x0
x1
)
Theorem
af26f..
not_eq_2m_2n1
:
∀ x0 .
x0
∈
int
⟶
∀ x1 .
x1
∈
int
⟶
mul_SNo
2
x0
=
add_SNo
(
mul_SNo
2
x1
)
1
⟶
∀ x2 : ο .
x2
(proof)
Param
div_SNo
div_SNo
:
ι
→
ι
→
ι
Known
div_SNo_0_denum
div_SNo_0_denum
:
∀ x0 .
SNo
x0
⟶
div_SNo
x0
0
=
0
Known
SNo_div_SNo
SNo_div_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
div_SNo
x0
x1
)
Known
mul_div_SNo_invR
mul_div_SNo_invR
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
(
x1
=
0
⟶
∀ x2 : ο .
x2
)
⟶
mul_SNo
x1
(
div_SNo
x0
x1
)
=
x0
Theorem
a3726..
divides_int_div_SNo_int
:
∀ x0 x1 .
divides_int
x0
x1
⟶
div_SNo
x1
x0
∈
int
(proof)
Known
div_SNo_pos_LtL
div_SNo_pos_LtL
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
0
x1
⟶
SNoLt
x0
(
mul_SNo
x2
x1
)
⟶
SNoLt
(
div_SNo
x0
x1
)
x2
Known
SNoLt_0_2
SNoLt_0_2
:
SNoLt
0
2
Known
add_SNo_Lt1_cancel
add_SNo_Lt1_cancel
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
x2
x1
)
⟶
SNoLt
x0
x2
Known
add_SNo_minus_SNo_rinv
add_SNo_minus_SNo_rinv
:
∀ x0 .
SNo
x0
⟶
add_SNo
x0
(
minus_SNo
x0
)
=
0
Known
add_SNo_1_1_2
add_SNo_1_1_2
:
add_SNo
1
1
=
2
Known
add_SNo_minus_R2
add_SNo_minus_R2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
(
add_SNo
x0
x1
)
(
minus_SNo
x1
)
=
x0
Known
aa7e8..
nonneg_int_nat_p
:
∀ x0 .
x0
∈
int
⟶
SNoLe
0
x0
⟶
nat_p
x0
Known
mul_SNo_assoc
mul_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
mul_SNo
x1
x2
)
=
mul_SNo
(
mul_SNo
x0
x1
)
x2
Known
mul_div_SNo_L
mul_div_SNo_L
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x2
(
div_SNo
x0
x1
)
=
div_SNo
(
mul_SNo
x2
x0
)
x1
Known
div_mul_SNo_invL
div_mul_SNo_invL
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
(
x1
=
0
⟶
∀ x2 : ο .
x2
)
⟶
div_SNo
(
mul_SNo
x0
x1
)
x1
=
x0
Known
SNoLtLe
SNoLtLe
:
∀ x0 x1 .
SNoLt
x0
x1
⟶
SNoLe
x0
x1
Known
div_SNo_pos_pos
div_SNo_pos_pos
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
0
x0
⟶
SNoLt
0
x1
⟶
SNoLt
0
(
div_SNo
x0
x1
)
Known
mul_div_SNo_both
mul_div_SNo_both
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
mul_SNo
(
div_SNo
x0
x1
)
(
div_SNo
x2
x3
)
=
div_SNo
(
mul_SNo
x0
x2
)
(
mul_SNo
x1
x3
)
Known
mul_SNo_pos_pos
mul_SNo_pos_pos
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
0
x0
⟶
SNoLt
0
x1
⟶
SNoLt
0
(
mul_SNo
x0
x1
)
Theorem
9bd18..
form100_1_lem1
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
mul_SNo
x0
x0
=
mul_SNo
2
(
mul_SNo
x1
x1
)
⟶
x1
=
0
(proof)
Theorem
1129e..
form100_1_lem2
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
setminus
omega
1
⟶
mul_SNo
x0
x0
=
mul_SNo
2
(
mul_SNo
x1
x1
)
⟶
∀ x2 : ο .
x2
(proof)
previous assets