Search for blocks/addresses/...

Proofgold Address

address
PURrycW7YtUyXeogfjn9LMCSWCsYE9sFK6h
total
0
mg
-
conjpub
-
current assets
c48e3../618d5.. bday: 28463 doc published by PrQUS..
Param SNoSNo : ιο
Param nInnIn : ιιο
Param SingSing : ιι
Param ordsuccordsucc : ιι
Known complex_tag_freshcomplex_tag_fresh : ∀ x0 . SNo x0∀ x1 . x1x0nIn (Sing 2) x1
Param pair_tagpair_tag : ιιιι
Definition SNo_pairSNo_pair := pair_tag (Sing 2)
Known SNo_pair_0SNo_pair_0 : ∀ x0 . SNo_pair x0 0 = x0
Known SNo_pair_prop_1SNo_pair_prop_1 : ∀ x0 x1 x2 x3 . SNo x0SNo x2SNo_pair x0 x1 = SNo_pair x2 x3x0 = x2
Known SNo_pair_prop_2SNo_pair_prop_2 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNo_pair x0 x1 = SNo_pair x2 x3x1 = x3
Param CD_carrCD_carr : ι(ιο) → ιο
Definition CSNoCSNo := CD_carr (Sing 2) SNo
Known CSNo_ICSNo_I : ∀ x0 x1 . SNo x0SNo x1CSNo (SNo_pair x0 x1)
Known CSNo_ECSNo_E : ∀ x0 . CSNo x0∀ x1 : ι → ο . (∀ x2 x3 . SNo x2SNo x3x0 = SNo_pair x2 x3x1 (SNo_pair x2 x3))x1 x0
Known SNo_CSNoSNo_CSNo : ∀ x0 . SNo x0CSNo x0
Known CSNo_0CSNo_0 : CSNo 0
Known CSNo_1CSNo_1 : CSNo 1
Param ExtendedSNoElt_ExtendedSNoElt_ : ιιο
Known CSNo_ExtendedSNoElt_3CSNo_ExtendedSNoElt_3 : ∀ x0 . CSNo x0ExtendedSNoElt_ 3 x0
Definition Complex_iComplex_i := SNo_pair 0 1
Param CD_proj0CD_proj0 : ι(ιο) → ιι
Definition CSNo_ReCSNo_Re := CD_proj0 (Sing 2) SNo
Param CD_proj1CD_proj1 : ι(ιο) → ιι
Definition CSNo_ImCSNo_Im := CD_proj1 (Sing 2) SNo
Known CSNo_Re2CSNo_Re2 : ∀ x0 x1 . SNo x0SNo x1CSNo_Re (SNo_pair x0 x1) = x0
Known CSNo_Im2CSNo_Im2 : ∀ x0 x1 . SNo x0SNo x1CSNo_Im (SNo_pair x0 x1) = x1
Known CSNo_ReRCSNo_ReR : ∀ x0 . CSNo x0SNo (CSNo_Re x0)
Known CSNo_ImRCSNo_ImR : ∀ x0 . CSNo x0SNo (CSNo_Im x0)
Known CSNo_ReIm_splitCSNo_ReIm_split : ∀ x0 x1 . CSNo x0CSNo x1CSNo_Re x0 = CSNo_Re x1CSNo_Im x0 = CSNo_Im x1x0 = x1
Definition CD_minusCD_minus := λ x0 . λ x1 : ι → ο . λ x2 : ι → ι . λ x3 . pair_tag x0 (x2 (CD_proj0 x0 x1 x3)) (x2 (CD_proj1 x0 x1 x3))
Param minus_SNominus_SNo : ιι
Definition minus_CSNominus_CSNo := CD_minus (Sing 2) SNo minus_SNo
Param CD_conjCD_conj : ι(ιο) → (ιι) → (ιι) → ιι
Definition conj_CSNoconj_CSNo := CD_conj (Sing 2) SNo minus_SNo (λ x0 . x0)
Definition CD_addCD_add := λ x0 . λ x1 : ι → ο . λ x2 : ι → ι → ι . λ x3 x4 . pair_tag x0 (x2 (CD_proj0 x0 x1 x3) (CD_proj0 x0 x1 x4)) (x2 (CD_proj1 x0 x1 x3) (CD_proj1 x0 x1 x4))
Param add_SNoadd_SNo : ιιι
Definition add_CSNoadd_CSNo := CD_add (Sing 2) SNo add_SNo
Definition CD_mulCD_mul := λ x0 . λ x1 : ι → ο . λ x2 x3 : ι → ι . λ x4 x5 : ι → ι → ι . λ x6 x7 . pair_tag x0 (x4 (x5 (CD_proj0 x0 x1 x6) (CD_proj0 x0 x1 x7)) (x2 (x5 (x3 (CD_proj1 x0 x1 x7)) (CD_proj1 x0 x1 x6)))) (x4 (x5 (CD_proj1 x0 x1 x7) (CD_proj0 x0 x1 x6)) (x5 (CD_proj1 x0 x1 x6) (x3 (CD_proj0 x0 x1 x7))))
Param mul_SNomul_SNo : ιιι
Definition mul_CSNomul_CSNo := CD_mul (Sing 2) SNo minus_SNo (λ x0 . x0) add_SNo mul_SNo
Param CD_exp_natCD_exp_nat : ι(ιο) → (ιι) → (ιι) → (ιιι) → (ιιι) → ιιι
Definition exp_CSNo_natexp_CSNo_nat := CD_exp_nat (Sing 2) SNo minus_SNo (λ x0 . x0) add_SNo mul_SNo
Param exp_SNo_natexp_SNo_nat : ιιι
Definition abs_sqr_CSNoabs_sqr_CSNo := λ x0 . add_SNo (exp_SNo_nat (CSNo_Re x0) 2) (exp_SNo_nat (CSNo_Im x0) 2)
Param recip_SNorecip_SNo : ιι
Definition div_SNodiv_SNo := λ x0 x1 . mul_SNo x0 (recip_SNo x1)
Definition recip_CSNorecip_CSNo := λ x0 . SNo_pair (div_SNo (CSNo_Re x0) (abs_sqr_CSNo x0)) (minus_SNo (div_SNo (CSNo_Im x0) (abs_sqr_CSNo x0)))
Definition div_CSNodiv_CSNo := λ x0 x1 . mul_CSNo x0 (recip_CSNo x1)
Known CSNo_Complex_iCSNo_Complex_i : CSNo Complex_i
Known CSNo_minus_CSNoCSNo_minus_CSNo : ∀ x0 . CSNo x0CSNo (minus_CSNo x0)
Known minus_CSNo_CReminus_CSNo_CRe : ∀ x0 . CSNo x0CSNo_Re (minus_CSNo x0) = minus_SNo (CSNo_Re x0)
Known minus_CSNo_CImminus_CSNo_CIm : ∀ x0 . CSNo x0CSNo_Im (minus_CSNo x0) = minus_SNo (CSNo_Im x0)
Known CSNo_add_CSNoCSNo_add_CSNo : ∀ x0 x1 . CSNo x0CSNo x1CSNo (add_CSNo x0 x1)
Known add_CSNo_CReadd_CSNo_CRe : ∀ x0 x1 . CSNo x0CSNo x1CSNo_Re (add_CSNo x0 x1) = add_SNo (CSNo_Re x0) (CSNo_Re x1)
Known add_CSNo_CImadd_CSNo_CIm : ∀ x0 x1 . CSNo x0CSNo x1CSNo_Im (add_CSNo x0 x1) = add_SNo (CSNo_Im x0) (CSNo_Im x1)
Known CSNo_mul_CSNoCSNo_mul_CSNo : ∀ x0 x1 . CSNo x0CSNo x1CSNo (mul_CSNo x0 x1)
Known mul_CSNo_CRemul_CSNo_CRe : ∀ x0 x1 . CSNo x0CSNo x1CSNo_Re (mul_CSNo x0 x1) = add_SNo (mul_SNo (CSNo_Re x0) (CSNo_Re x1)) (minus_SNo (mul_SNo (CSNo_Im x1) (CSNo_Im x0)))
Known mul_CSNo_CImmul_CSNo_CIm : ∀ x0 x1 . CSNo x0CSNo x1CSNo_Im (mul_CSNo x0 x1) = add_SNo (mul_SNo (CSNo_Im x1) (CSNo_Re x0)) (mul_SNo (CSNo_Im x0) (CSNo_Re x1))
Known SNo_ReSNo_Re : ∀ x0 . SNo x0CSNo_Re x0 = x0
Known SNo_ImSNo_Im : ∀ x0 . SNo x0CSNo_Im x0 = 0
Known Re_0Re_0 : CSNo_Re 0 = 0
Known Im_0Im_0 : CSNo_Im 0 = 0
Known Re_1Re_1 : CSNo_Re 1 = 1
Known Im_1Im_1 : CSNo_Im 1 = 0
Known Re_iRe_i : CSNo_Re Complex_i = 0
Known Im_iIm_i : CSNo_Im Complex_i = 1
Known mul_CSNo_mul_SNomul_CSNo_mul_SNo : ∀ x0 x1 . SNo x0SNo x1mul_CSNo x0 x1 = mul_SNo x0 x1
Known mul_CSNo_1Rmul_CSNo_1R : ∀ x0 . CSNo x0mul_CSNo x0 1 = x0
Known exp_CSNo_nat_2exp_CSNo_nat_2 : ∀ x0 . CSNo x0exp_CSNo_nat x0 2 = mul_CSNo x0 x0
Param nat_pnat_p : ιο
Known CSNo_exp_CSNo_natCSNo_exp_CSNo_nat : ∀ x0 . CSNo x0∀ x1 . nat_p x1CSNo (exp_CSNo_nat x0 x1)
Known mul_CSNo_commul_CSNo_com : ∀ x0 x1 . CSNo x0CSNo x1mul_CSNo x0 x1 = mul_CSNo x1 x0
Known mul_CSNo_assocmul_CSNo_assoc : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2mul_CSNo x0 (mul_CSNo x1 x2) = mul_CSNo (mul_CSNo x0 x1) x2
Known SNo_add_SNoSNo_add_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (add_SNo x0 x1)
Known SNo_exp_SNo_natSNo_exp_SNo_nat : ∀ x0 . SNo x0∀ x1 . nat_p x1SNo (exp_SNo_nat x0 x1)
Known nat_2nat_2 : nat_p 2
Theorem SNo_abs_sqr_CSNoSNo_abs_sqr_CSNo : ∀ x0 . CSNo x0SNo (abs_sqr_CSNo x0) (proof)
Param SNoLeSNoLe : ιιο
Known add_SNo_0Ladd_SNo_0L : ∀ x0 . SNo x0add_SNo 0 x0 = x0
Known SNo_0SNo_0 : SNo 0
Known add_SNo_Le3add_SNo_Le3 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLe x0 x2SNoLe x1 x3SNoLe (add_SNo x0 x1) (add_SNo x2 x3)
Known exp_SNo_nat_2exp_SNo_nat_2 : ∀ x0 . SNo x0exp_SNo_nat x0 2 = mul_SNo x0 x0
Known SNo_sqr_nonnegSNo_sqr_nonneg : ∀ x0 . SNo x0SNoLe 0 (mul_SNo x0 x0)
Theorem abs_sqr_CSNo_nonnegabs_sqr_CSNo_nonneg : ∀ x0 . CSNo x0SNoLe 0 (abs_sqr_CSNo x0) (proof)
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Param SNoLtSNoLt : ιιο
Known SNo_zero_or_sqr_pos'SNo_zero_or_sqr_pos : ∀ x0 . SNo x0or (x0 = 0) (SNoLt 0 (exp_SNo_nat x0 2))
Definition FalseFalse := ∀ x0 : ο . x0
Known FalseEFalseE : False∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Known SNoLt_irrefSNoLt_irref : ∀ x0 . not (SNoLt x0 x0)
Known SNoLtLe_traSNoLtLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLe x1 x2SNoLt x0 x2
Known add_SNo_0Radd_SNo_0R : ∀ x0 . SNo x0add_SNo x0 0 = x0
Known add_SNo_Le2add_SNo_Le2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x1 x2SNoLe (add_SNo x0 x1) (add_SNo x0 x2)
Known SNo_sqr_nonneg'SNo_sqr_nonneg : ∀ x0 . SNo x0SNoLe 0 (exp_SNo_nat x0 2)
Known add_SNo_Le1add_SNo_Le1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x2SNoLe (add_SNo x0 x1) (add_SNo x2 x1)
Theorem abs_sqr_CSNo_zeroabs_sqr_CSNo_zero : ∀ x0 . CSNo x0abs_sqr_CSNo x0 = 0x0 = 0 (proof)
Known SNo_div_SNoSNo_div_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (div_SNo x0 x1)
Known SNo_minus_SNoSNo_minus_SNo : ∀ x0 . SNo x0SNo (minus_SNo x0)
Theorem CSNo_recip_CSNoCSNo_recip_CSNo : ∀ x0 . CSNo x0CSNo (recip_CSNo x0) (proof)
Known mul_SNo_zeroRmul_SNo_zeroR : ∀ x0 . SNo x0mul_SNo x0 0 = 0
Known mul_SNo_zeroLmul_SNo_zeroL : ∀ x0 . SNo x0mul_SNo 0 x0 = 0
Known SNo_1SNo_1 : SNo 1
Known minus_SNo_0minus_SNo_0 : minus_SNo 0 = 0
Known mul_SNo_oneLmul_SNo_oneL : ∀ x0 . SNo x0mul_SNo 1 x0 = x0
Known mul_SNo_minus_distrLmul_SNo_minus_distrL : ∀ x0 x1 . SNo x0SNo x1mul_SNo (minus_SNo x0) x1 = minus_SNo (mul_SNo x0 x1)
Known minus_SNo_involminus_SNo_invol : ∀ x0 . SNo x0minus_SNo (minus_SNo x0) = x0
Known mul_SNo_com_3_0_1mul_SNo_com_3_0_1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (mul_SNo x1 x2) = mul_SNo x1 (mul_SNo x0 x2)
Known mul_SNo_assocmul_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (mul_SNo x1 x2) = mul_SNo (mul_SNo x0 x1) x2
Known mul_SNo_commul_SNo_com : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 x1 = mul_SNo x1 x0
Known mul_SNo_distrRmul_SNo_distrR : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo (add_SNo x0 x1) x2 = add_SNo (mul_SNo x0 x2) (mul_SNo x1 x2)
Known add_SNo_minus_SNo_linvadd_SNo_minus_SNo_linv : ∀ x0 . SNo x0add_SNo (minus_SNo x0) x0 = 0
Known SNo_mul_SNo_3SNo_mul_SNo_3 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNo (mul_SNo x0 (mul_SNo x1 x2))
Known SNo_mul_SNoSNo_mul_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (mul_SNo x0 x1)
Theorem CSNo_relative_recipCSNo_relative_recip : ∀ x0 . CSNo x0∀ x1 . SNo x1mul_SNo (add_SNo (exp_SNo_nat (CSNo_Re x0) 2) (exp_SNo_nat (CSNo_Im x0) 2)) x1 = 1mul_CSNo x0 (add_CSNo (mul_CSNo x1 (CSNo_Re x0)) (minus_CSNo (mul_CSNo Complex_i (mul_CSNo x1 (CSNo_Im x0))))) = 1 (proof)
Known recip_SNo_invRrecip_SNo_invR : ∀ x0 . SNo x0(x0 = 0∀ x1 : ο . x1)mul_SNo x0 (recip_SNo x0) = 1
Known mul_SNo_oneRmul_SNo_oneR : ∀ x0 . SNo x0mul_SNo x0 1 = x0
Known SNo_recip_SNoSNo_recip_SNo : ∀ x0 . SNo x0SNo (recip_SNo x0)
Theorem recip_CSNo_invRrecip_CSNo_invR : ∀ x0 . CSNo x0(x0 = 0∀ x1 : ο . x1)mul_CSNo x0 (recip_CSNo x0) = 1 (proof)
Theorem recip_CSNo_invLrecip_CSNo_invL : ∀ x0 . CSNo x0(x0 = 0∀ x1 : ο . x1)mul_CSNo (recip_CSNo x0) x0 = 1 (proof)
Theorem CSNo_div_CSNoCSNo_div_CSNo : ∀ x0 x1 . CSNo x0CSNo x1CSNo (div_CSNo x0 x1) (proof)
Theorem mul_div_CSNo_invLmul_div_CSNo_invL : ∀ x0 x1 . CSNo x0CSNo x1(x1 = 0∀ x2 : ο . x2)mul_CSNo (div_CSNo x0 x1) x1 = x0 (proof)
Theorem mul_div_CSNo_invRmul_div_CSNo_invR : ∀ x0 x1 . CSNo x0CSNo x1(x1 = 0∀ x2 : ο . x2)mul_CSNo x1 (div_CSNo x0 x1) = x0 (proof)
Param sqrt_SNo_nonnegsqrt_SNo_nonneg : ιι
Known SNoLeESNoLeE : ∀ x0 x1 . SNo x0SNo x1SNoLe x0 x1or (SNoLt x0 x1) (x0 = x1)
Known SNoLt_trichotomy_or_impredSNoLt_trichotomy_or_impred : ∀ x0 x1 . SNo x0SNo x1∀ x2 : ο . (SNoLt x0 x1x2)(x0 = x1x2)(SNoLt x1 x0x2)x2
Known pos_mul_SNo_Lt2pos_mul_SNo_Lt2 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLt 0 x0SNoLt 0 x1SNoLt x0 x2SNoLt x1 x3SNoLt (mul_SNo x0 x1) (mul_SNo x2 x3)
Known mul_SNo_pos_posmul_SNo_pos_pos : ∀ x0 x1 . SNo x0SNo x1SNoLt 0 x0SNoLt 0 x1SNoLt 0 (mul_SNo x0 x1)
Known sqrt_SNo_nonneg_0sqrt_SNo_nonneg_0 : sqrt_SNo_nonneg 0 = 0
Known sqrt_SNo_nonneg_sqrsqrt_SNo_nonneg_sqr : ∀ x0 . SNo x0SNoLe 0 x0mul_SNo (sqrt_SNo_nonneg x0) (sqrt_SNo_nonneg x0) = x0
Known sqrt_SNo_nonneg_nonnegsqrt_SNo_nonneg_nonneg : ∀ x0 . SNo x0SNoLe 0 x0SNoLe 0 (sqrt_SNo_nonneg x0)
Known SNo_sqrt_SNo_nonnegSNo_sqrt_SNo_nonneg : ∀ x0 . SNo x0SNoLe 0 x0SNo (sqrt_SNo_nonneg x0)
Theorem sqrt_SNo_nonneg_sqr_idsqrt_SNo_nonneg_sqr_id : ∀ x0 . SNo x0SNoLe 0 x0sqrt_SNo_nonneg (exp_SNo_nat x0 2) = x0 (proof)
Known SNoLtLe_orSNoLtLe_or : ∀ x0 x1 . SNo x0SNo x1or (SNoLt x0 x1) (SNoLe x1 x0)
Known nonneg_mul_SNo_Le2nonneg_mul_SNo_Le2 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLe 0 x0SNoLe 0 x1SNoLe x0 x2SNoLe x1 x3SNoLe (mul_SNo x0 x1) (mul_SNo x2 x3)
Known SNoLe_traSNoLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x1SNoLe x1 x2SNoLe x0 x2
Known SNoLtLeSNoLtLe : ∀ x0 x1 . SNoLt x0 x1SNoLe x0 x1
Theorem sqrt_SNo_nonneg_mon_strictsqrt_SNo_nonneg_mon_strict : ∀ x0 x1 . SNo x0SNo x1SNoLe 0 x0SNoLt x0 x1SNoLt (sqrt_SNo_nonneg x0) (sqrt_SNo_nonneg x1) (proof)
Known SNoLe_refSNoLe_ref : ∀ x0 . SNoLe x0 x0
Theorem sqrt_SNo_nonneg_monsqrt_SNo_nonneg_mon : ∀ x0 x1 . SNo x0SNo x1SNoLe 0 x0SNoLe x0 x1SNoLe (sqrt_SNo_nonneg x0) (sqrt_SNo_nonneg x1) (proof)
Known mul_SNo_nonneg_nonnegmul_SNo_nonneg_nonneg : ∀ x0 x1 . SNo x0SNo x1SNoLe 0 x0SNoLe 0 x1SNoLe 0 (mul_SNo x0 x1)
Known mul_SNo_com_4_inner_midmul_SNo_com_4_inner_mid : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3mul_SNo (mul_SNo x0 x1) (mul_SNo x2 x3) = mul_SNo (mul_SNo x0 x2) (mul_SNo x1 x3)
Theorem sqrt_SNo_nonneg_mul_SNosqrt_SNo_nonneg_mul_SNo : ∀ x0 x1 . SNo x0SNo x1SNoLe 0 x0SNoLe 0 x1sqrt_SNo_nonneg (mul_SNo x0 x1) = mul_SNo (sqrt_SNo_nonneg x0) (sqrt_SNo_nonneg x1) (proof)
Definition modulus_CSNomodulus_CSNo := λ x0 . sqrt_SNo_nonneg (abs_sqr_CSNo x0)
Theorem SNo_modulus_CSNoSNo_modulus_CSNo : ∀ x0 . CSNo x0SNo (modulus_CSNo x0) (proof)
Theorem modulus_CSNo_nonnegmodulus_CSNo_nonneg : ∀ x0 . CSNo x0SNoLe 0 (modulus_CSNo x0) (proof)
Param If_iIf_i : οιιι
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param eps_eps_ : ιι
Definition sqrt_CSNosqrt_CSNo := λ x0 . If_i (or (SNoLt (CSNo_Im x0) 0) (and (CSNo_Im x0 = 0) (SNoLt (CSNo_Re x0) 0))) (SNo_pair (sqrt_SNo_nonneg (mul_SNo (eps_ 1) (add_SNo (CSNo_Re x0) (modulus_CSNo x0)))) (minus_SNo (sqrt_SNo_nonneg (mul_SNo (eps_ 1) (add_SNo (minus_SNo (CSNo_Re x0)) (modulus_CSNo x0)))))) (SNo_pair (sqrt_SNo_nonneg (mul_SNo (eps_ 1) (add_SNo (CSNo_Re x0) (modulus_CSNo x0)))) (sqrt_SNo_nonneg (mul_SNo (eps_ 1) (add_SNo (minus_SNo (CSNo_Re x0)) (modulus_CSNo x0)))))
Known If_i_1If_i_1 : ∀ x0 : ο . ∀ x1 x2 . x0If_i x0 x1 x2 = x1
Known mul_SNo_minus_minusmul_SNo_minus_minus : ∀ x0 x1 . SNo x0SNo x1mul_SNo (minus_SNo x0) (minus_SNo x1) = mul_SNo x0 x1
Known minus_add_SNo_distrminus_add_SNo_distr : ∀ x0 x1 . SNo x0SNo x1minus_SNo (add_SNo x0 x1) = add_SNo (minus_SNo x0) (minus_SNo x1)
Known eps_1_half_eq1eps_1_half_eq1 : add_SNo (eps_ 1) (eps_ 1) = 1
Known minus_SNo_Lt_contra2minus_SNo_Lt_contra2 : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 (minus_SNo x1)SNoLt x1 (minus_SNo x0)
Known orILorIL : ∀ x0 x1 : ο . x0or x0 x1
Known orIRorIR : ∀ x0 x1 : ο . x1or x0 x1
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known If_i_0If_i_0 : ∀ x0 : ο . ∀ x1 x2 . not x0If_i x0 x1 x2 = x2
Known SNoLt_traSNoLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLt x1 x2SNoLt x0 x2
Known mul_SNo_minus_distrRmul_minus_SNo_distrR : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 (minus_SNo x1) = minus_SNo (mul_SNo x0 x1)
Known mul_SNo_distrLmul_SNo_distrL : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (add_SNo x1 x2) = add_SNo (mul_SNo x0 x1) (mul_SNo x0 x2)
Known add_SNo_com_4_inner_midadd_SNo_com_4_inner_mid : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3add_SNo (add_SNo x0 x1) (add_SNo x2 x3) = add_SNo (add_SNo x0 x2) (add_SNo x1 x3)
Known add_SNo_minus_SNo_rinvadd_SNo_minus_SNo_rinv : ∀ x0 . SNo x0add_SNo x0 (minus_SNo x0) = 0
Known SNo_foilSNo_foil : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3mul_SNo (add_SNo x0 x1) (add_SNo x2 x3) = add_SNo (mul_SNo x0 x2) (add_SNo (mul_SNo x0 x3) (add_SNo (mul_SNo x1 x2) (mul_SNo x1 x3)))
Known add_SNo_minus_L2add_SNo_minus_L2 : ∀ x0 x1 . SNo x0SNo x1add_SNo (minus_SNo x0) (add_SNo x0 x1) = x1
Known add_SNo_comadd_SNo_com : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 x1 = add_SNo x1 x0
Known add_SNo_minus_Le2badd_SNo_minus_Le2b : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe (add_SNo x2 x1) x0SNoLe x2 (add_SNo x0 (minus_SNo x1))
Param omegaomega : ι
Known SNo_eps_posSNo_eps_pos : ∀ x0 . x0omegaSNoLt 0 (eps_ x0)
Known nat_p_omeganat_p_omega : ∀ x0 . nat_p x0x0omega
Known nat_1nat_1 : nat_p 1
Known SNo_eps_SNo_eps_ : ∀ x0 . x0omegaSNo (eps_ x0)
Theorem sqrt_CSNo_sqrtsqrt_CSNo_sqrt : ∀ x0 . CSNo x0exp_CSNo_nat (sqrt_CSNo x0) 2 = x0 (proof)
Param lamSigma : ι(ιι) → ι
Definition setprodsetprod := λ x0 x1 . lam x0 (λ x2 . x1)
Param realreal : ι
Param apap : ιιι
Definition complexcomplex := {SNo_pair (ap x0 0) (ap x0 1)|x0 ∈ setprod real real}
Known tuple_2_0_eqtuple_2_0_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 0 = x0
Known tuple_2_1_eqtuple_2_1_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 1 = x1
Known ReplIReplI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0x1 x2prim5 x0 x1
Known tuple_2_setprodtuple_2_setprod : ∀ x0 x1 x2 . x2x0∀ x3 . x3x1lam 2 (λ x4 . If_i (x4 = 0) x2 x3)setprod x0 x1
Theorem complex_Icomplex_I : ∀ x0 . x0real∀ x1 . x1realSNo_pair x0 x1complex (proof)
Known ReplE_impredReplE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2prim5 x0 x1∀ x3 : ο . (∀ x4 . x4x0x2 = x1 x4x3)x3
Known ap0_Sigmaap0_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1ap x2 0x0
Known ap1_Sigmaap1_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1ap x2 1x1 (ap x2 0)
Theorem complex_Ecomplex_E : ∀ x0 . x0complex∀ x1 : ο . (∀ x2 . x2real∀ x3 . x3realx0 = SNo_pair x2 x3x1)x1 (proof)
Known real_SNoreal_SNo : ∀ x0 . x0realSNo x0
Theorem complex_CSNocomplex_CSNo : ∀ x0 . x0complexCSNo x0 (proof)
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Known real_0real_0 : 0real
Theorem real_complexreal_complex : realcomplex (proof)
Theorem complex_0complex_0 : 0complex (proof)
Known real_1real_1 : 1real
Theorem complex_1complex_1 : 1complex (proof)
Theorem complex_icomplex_i : Complex_icomplex (proof)
Theorem complex_Re_eqcomplex_Re_eq : ∀ x0 . x0real∀ x1 . x1realCSNo_Re (SNo_pair x0 x1) = x0 (proof)
Theorem complex_Im_eqcomplex_Im_eq : ∀ x0 . x0real∀ x1 . x1realCSNo_Im (SNo_pair x0 x1) = x1 (proof)
Theorem complex_Re_realcomplex_Re_real : ∀ x0 . x0complexCSNo_Re x0real (proof)
Theorem complex_Im_realcomplex_Im_real : ∀ x0 . x0complexCSNo_Im x0real (proof)
Theorem complex_ReIm_splitcomplex_ReIm_split : ∀ x0 . x0complex∀ x1 . x1complexCSNo_Re x0 = CSNo_Re x1CSNo_Im x0 = CSNo_Im x1x0 = x1 (proof)
Known real_minus_SNoreal_minus_SNo : ∀ x0 . x0realminus_SNo x0real
Theorem complex_minus_CSNocomplex_minus_CSNo : ∀ x0 . x0complexminus_CSNo x0complex (proof)
Known real_add_SNoreal_add_SNo : ∀ x0 . x0real∀ x1 . x1realadd_SNo x0 x1real
Theorem complex_add_CSNocomplex_add_CSNo : ∀ x0 . x0complex∀ x1 . x1complexadd_CSNo x0 x1complex (proof)
Known real_mul_SNoreal_mul_SNo : ∀ x0 . x0real∀ x1 . x1realmul_SNo x0 x1real
Theorem complex_mul_CSNocomplex_mul_CSNo : ∀ x0 . x0complex∀ x1 . x1complexmul_CSNo x0 x1complex (proof)
Theorem real_Re_eqreal_Re_eq : ∀ x0 . x0realCSNo_Re x0 = x0 (proof)
Theorem real_Im_eqreal_Im_eq : ∀ x0 . x0realCSNo_Im x0 = 0 (proof)
Theorem mul_i_real_eqmul_i_real_eq : ∀ x0 . x0realmul_CSNo Complex_i x0 = SNo_pair 0 x0 (proof)
Theorem real_Re_i_eqreal_Re_i_eq : ∀ x0 . x0realCSNo_Re (mul_CSNo Complex_i x0) = 0 (proof)
Theorem real_Im_i_eqreal_Im_i_eq : ∀ x0 . x0realCSNo_Im (mul_CSNo Complex_i x0) = x0 (proof)
Theorem complex_etacomplex_eta : ∀ x0 . x0complexx0 = add_CSNo (CSNo_Re x0) (mul_CSNo Complex_i (CSNo_Im x0)) (proof)
Known real_div_SNoreal_div_SNo : ∀ x0 . x0real∀ x1 . x1realdiv_SNo x0 x1real
Theorem complex_recip_CSNocomplex_recip_CSNo : ∀ x0 . x0complexrecip_CSNo x0complex (proof)
Theorem complex_div_CSNocomplex_div_CSNo : ∀ x0 . x0complex∀ x1 . x1complexdiv_CSNo x0 x1complex (proof)
Param SepSep : ι(ιο) → ι
Known set_extset_ext : ∀ x0 x1 . x0x1x1x0x0 = x1
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Known SepESepE : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1and (x2x0) (x1 x2)
Theorem complex_real_set_eqcomplex_real_set_eq : real = {x1 ∈ complex|CSNo_Re x1 = x1} (proof)

previous assets