Search for blocks/addresses/...

Proofgold Address

address
PUSRFZTKrG9EFxWgXqavLm9hcptrES3pPgp
total
0
mg
-
conjpub
-
current assets
7ed21../44d01.. bday: 18726 doc published by Pr4zB..
Definition ChurchNum_p := λ x0 : (ι → ι)ι → ι . ∀ x1 : ((ι → ι)ι → ι) → ο . x1 (λ x2 : ι → ι . λ x3 . x3)(∀ x2 : (ι → ι)ι → ι . x1 x2x1 (λ x3 : ι → ι . λ x4 . x3 (x2 x3 x4)))x1 x0
Theorem 5252e.. : ChurchNum_p (λ x0 : ι → ι . λ x1 . x1) (proof)
Theorem 335fd.. : ∀ x0 : (ι → ι)ι → ι . ChurchNum_p x0ChurchNum_p (λ x1 : ι → ι . λ x2 . x1 (x0 x1 x2)) (proof)
Theorem 83d4c.. : ChurchNum_p (λ x0 : ι → ι . x0) (proof)
Theorem 4613e.. : ChurchNum_p (λ x0 : ι → ι . λ x1 . x0 (x0 x1)) (proof)
Theorem 9d632.. : ChurchNum_p (λ x0 : ι → ι . λ x1 . x0 (x0 (x0 x1))) (proof)
Theorem a1f0d.. : ChurchNum_p (λ x0 : ι → ι . λ x1 . x0 (x0 (x0 (x0 x1)))) (proof)
Theorem c9952.. : ChurchNum_p (λ x0 : ι → ι . λ x1 . x0 (x0 (x0 (x0 (x0 x1))))) (proof)
Theorem 5d5e3.. : ChurchNum_p (λ x0 : ι → ι . λ x1 . x0 (x0 (x0 (x0 (x0 (x0 x1)))))) (proof)
Theorem 68754.. : ChurchNum_p (λ x0 : ι → ι . λ x1 . x0 (x0 (x0 (x0 (x0 (x0 (x0 x1))))))) (proof)
Theorem 66cf5.. : ChurchNum_p (λ x0 : ι → ι . λ x1 . x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 x1)))))))) (proof)
Theorem 66b3d.. : ChurchNum_p (λ x0 : ι → ι . λ x1 . x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 x1))))))))) (proof)
Theorem 0a45b.. : ChurchNum_p (λ x0 : ι → ι . λ x1 . x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 x1)))))))))) (proof)
Theorem 1bf92.. : ChurchNum_p (λ x0 : ι → ι . λ x1 . x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 x1))))))))))) (proof)
Theorem b848e.. : ChurchNum_p (λ x0 : ι → ι . λ x1 . x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 x1)))))))))))) (proof)
Theorem f6fb6.. : ChurchNum_p (λ x0 : ι → ι . λ x1 . x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 x1))))))))))))) (proof)
Theorem 7c98b.. : ChurchNum_p (λ x0 : ι → ι . λ x1 . x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 x1)))))))))))))) (proof)
Theorem 466b2.. : ChurchNum_p (λ x0 : ι → ι . λ x1 . x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 x1))))))))))))))) (proof)
Theorem d9243.. : ChurchNum_p (λ x0 : ι → ι . λ x1 . x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 x1)))))))))))))))) (proof)
Theorem 43d3d.. : ChurchNum_p (λ x0 : ι → ι . λ x1 . x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 x1))))))))))))))))) (proof)
Theorem 4b7da.. : ChurchNum_p (λ x0 : ι → ι . λ x1 . x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 x1)))))))))))))))))) (proof)
Theorem bb726.. : ChurchNum_p (λ x0 : ι → ι . λ x1 . x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 x1))))))))))))))))))) (proof)
Theorem 4e557.. : ChurchNum_p (λ x0 : ι → ι . λ x1 . x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 x1)))))))))))))))))))) (proof)
Theorem b017b.. : ChurchNum_p (λ x0 : ι → ι . λ x1 . x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 x1))))))))))))))))))))) (proof)
Theorem f647d.. : ChurchNum_p (λ x0 : ι → ι . λ x1 . x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 x1)))))))))))))))))))))) (proof)
Theorem 43047.. : ChurchNum_p (λ x0 : ι → ι . λ x1 . x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 x1))))))))))))))))))))))) (proof)
Theorem 3f720.. : ChurchNum_p (λ x0 : ι → ι . λ x1 . x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 x1)))))))))))))))))))))))) (proof)
Param nat_pnat_p : ιο
Param ordsuccordsucc : ιι
Known nat_0nat_0 : nat_p 0
Known nat_ordsuccnat_ordsucc : ∀ x0 . nat_p x0nat_p (ordsucc x0)
Theorem b26f0.. : ∀ x0 : (ι → ι)ι → ι . ChurchNum_p x0nat_p (x0 ordsucc 0) (proof)
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Theorem c0023.. : ∀ x0 : ((ι → ι)ι → ι) → ο . x0 (λ x1 : ι → ι . λ x2 . x2)(∀ x1 : (ι → ι)ι → ι . ChurchNum_p x1x0 x1x0 (λ x2 : ι → ι . λ x3 . x2 (x1 x2 x3)))∀ x1 : (ι → ι)ι → ι . ChurchNum_p x1x0 x1 (proof)
Param add_natadd_nat : ιιι
Known add_nat_0Ladd_nat_0L : ∀ x0 . nat_p x0add_nat 0 x0 = x0
Known add_nat_SLadd_nat_SL : ∀ x0 . nat_p x0∀ x1 . nat_p x1add_nat (ordsucc x0) x1 = ordsucc (add_nat x0 x1)
Theorem 39d66.. : ∀ x0 : (ι → ι)ι → ι . ChurchNum_p x0∀ x1 : (ι → ι)ι → ι . ChurchNum_p x1x0 ordsucc (x1 ordsucc 0) = add_nat (x0 ordsucc 0) (x1 ordsucc 0) (proof)
Definition u1 := 1
Definition u2 := ordsucc u1
Definition u3 := ordsucc u2
Definition u4 := ordsucc u3
Definition u5 := ordsucc u4
Definition u6 := ordsucc u5
Definition u7 := ordsucc u6
Definition u8 := ordsucc u7
Definition u9 := ordsucc u8
Definition u10 := ordsucc u9
Definition u11 := ordsucc u10
Definition u12 := ordsucc u11
Definition u13 := ordsucc u12
Definition u14 := ordsucc u13
Definition u15 := ordsucc u14
Definition u16 := ordsucc u15
Definition u17 := ordsucc u16
Definition u18 := ordsucc u17
Theorem 86c65.. : nat_p u18 (proof)
Definition u19 := ordsucc u18
Theorem d9e2e.. : nat_p u19 (proof)
Definition u20 := ordsucc u19
Theorem 2669c.. : nat_p u20 (proof)
Definition u21 := ordsucc u20
Theorem e8a0a.. : nat_p u21 (proof)
Definition u22 := ordsucc u21
Theorem daa33.. : nat_p u22 (proof)
Definition u23 := ordsucc u22
Theorem b73b8.. : nat_p u23 (proof)
Definition u24 := ordsucc u23
Theorem 73189.. : nat_p u24 (proof)
Known nat_0_in_ordsuccnat_0_in_ordsucc : ∀ x0 . nat_p x00ordsucc x0
Theorem 4c607.. : 0u24 (proof)
Known d8085.. : ∀ x0 x1 . nat_p x1x0ordsucc (add_nat x0 x1)
Theorem 610bf.. : u1u24 (proof)
Theorem 30da6.. : u2u24 (proof)
Theorem 3cb84.. : u3u24 (proof)
Theorem 43f74.. : u4u24 (proof)
Theorem 8f227.. : u5u24 (proof)
Known nat_17nat_17 : nat_p 17
Theorem 469db.. : u6u24 (proof)
Known nat_16nat_16 : nat_p 16
Theorem bb94c.. : u7u24 (proof)
Known nat_15nat_15 : nat_p 15
Theorem d2f24.. : u8u24 (proof)
Known nat_14nat_14 : nat_p 14
Theorem fd0d9.. : u9u24 (proof)
Known nat_13nat_13 : nat_p 13
Theorem df5ed.. : u10u24 (proof)
Known nat_12nat_12 : nat_p 12
Theorem 05672.. : u11u24 (proof)
Known nat_11nat_11 : nat_p 11
Theorem 15af9.. : u12u24 (proof)
Known nat_10nat_10 : nat_p 10
Theorem e6799.. : u13u24 (proof)
Known nat_9nat_9 : nat_p 9
Theorem 9522d.. : u14u24 (proof)
Known nat_8nat_8 : nat_p 8
Theorem fc764.. : u15u24 (proof)
Known nat_7nat_7 : nat_p 7
Theorem 2d7ca.. : u16u24 (proof)
Known nat_6nat_6 : nat_p 6
Theorem e4fb5.. : u17u24 (proof)
Known nat_5nat_5 : nat_p 5
Theorem f0252.. : u18u24 (proof)
Known nat_4nat_4 : nat_p 4
Theorem a4364.. : u19u24 (proof)
Known nat_3nat_3 : nat_p 3
Theorem 9da85.. : u20u24 (proof)
Known nat_2nat_2 : nat_p 2
Theorem 3ee80.. : u21u24 (proof)
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Known ordsuccI1ordsuccI1 : ∀ x0 . x0ordsucc x0
Known ordsuccI2ordsuccI2 : ∀ x0 . x0ordsucc x0
Theorem 9ec16.. : u22u24 (proof)
Theorem d7b2c.. : u23u24 (proof)

previous assets