Search for blocks/addresses/...

Proofgold Address

address
PUSRjvLjcx2j8QHnmVfJZtktzSHRKFwse9E
total
0
mg
-
conjpub
-
current assets
94224../c61fe.. bday: 27837 doc published by PrQUS..
Param SNoSNo : ιο
Param SNoLtSNoLt : ιιο
Param recip_SNo_posrecip_SNo_pos : ιι
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param mul_SNomul_SNo : ιιι
Param ordsuccordsucc : ιι
Known recip_SNo_pos_prop1recip_SNo_pos_prop1 : ∀ x0 . SNo x0SNoLt 0 x0and (SNo (recip_SNo_pos x0)) (mul_SNo x0 (recip_SNo_pos x0) = 1)
Theorem SNo_recip_SNo_posSNo_recip_SNo_pos : ∀ x0 . SNo x0SNoLt 0 x0SNo (recip_SNo_pos x0) (proof)
Theorem recip_SNo_pos_invRrecip_SNo_pos_invR : ∀ x0 . SNo x0SNoLt 0 x0mul_SNo x0 (recip_SNo_pos x0) = 1 (proof)
Known mul_SNo_nonzero_cancelmul_SNo_nonzero_cancel_L : ∀ x0 x1 x2 . SNo x0(x0 = 0∀ x3 : ο . x3)SNo x1SNo x2mul_SNo x0 x1 = mul_SNo x0 x2x1 = x2
Known SNo_1SNo_1 : SNo 1
Known neq_1_0neq_1_0 : 1 = 0∀ x0 : ο . x0
Known SNoLt_0_1SNoLt_0_1 : SNoLt 0 1
Known mul_SNo_oneLmul_SNo_oneL : ∀ x0 . SNo x0mul_SNo 1 x0 = x0
Theorem recip_SNo_pos_1recip_SNo_pos_1 : recip_SNo_pos 1 = 1 (proof)
Known SNoLt_trichotomy_or_impredSNoLt_trichotomy_or_impred : ∀ x0 x1 . SNo x0SNo x1∀ x2 : ο . (SNoLt x0 x1x2)(x0 = x1x2)(SNoLt x1 x0x2)x2
Known SNo_0SNo_0 : SNo 0
Definition FalseFalse := ∀ x0 : ο . x0
Known FalseEFalseE : False∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Known SNoLt_irrefSNoLt_irref : ∀ x0 . not (SNoLt x0 x0)
Known SNoLt_traSNoLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLt x1 x2SNoLt x0 x2
Known mul_SNo_pos_negmul_SNo_pos_neg : ∀ x0 x1 . SNo x0SNo x1SNoLt 0 x0SNoLt x1 0SNoLt (mul_SNo x0 x1) 0
Known mul_SNo_zeroRmul_SNo_zeroR : ∀ x0 . SNo x0mul_SNo x0 0 = 0
Theorem recip_SNo_pos_posrecip_SNo_pos_pos : ∀ x0 . SNo x0SNoLt 0 x0SNoLt 0 (recip_SNo_pos x0) (proof)
Known mul_SNo_commul_SNo_com : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 x1 = mul_SNo x1 x0
Theorem recip_SNo_pos_involrecip_SNo_pos_invol : ∀ x0 . SNo x0SNoLt 0 x0recip_SNo_pos (recip_SNo_pos x0) = x0 (proof)
Param nat_pnat_p : ιο
Param eps_eps_ : ιι
Param exp_SNo_natexp_SNo_nat : ιιι
Known SNo_exp_SNo_natSNo_exp_SNo_nat : ∀ x0 . SNo x0∀ x1 . nat_p x1SNo (exp_SNo_nat x0 x1)
Known SNo_2SNo_2 : SNo 2
Known mul_SNo_eps_power_2mul_SNo_eps_power_2 : ∀ x0 . nat_p x0mul_SNo (eps_ x0) (exp_SNo_nat 2 x0) = 1
Param omegaomega : ι
Known SNo_eps_posSNo_eps_pos : ∀ x0 . x0omegaSNoLt 0 (eps_ x0)
Known nat_p_omeganat_p_omega : ∀ x0 . nat_p x0x0omega
Known SNo_eps_SNo_eps_ : ∀ x0 . x0omegaSNo (eps_ x0)
Theorem recip_SNo_pos_eps_recip_SNo_pos_eps_ : ∀ x0 . nat_p x0recip_SNo_pos (eps_ x0) = exp_SNo_nat 2 x0 (proof)
Theorem recip_SNo_pos_pow_2recip_SNo_pos_pow_2 : ∀ x0 . nat_p x0recip_SNo_pos (exp_SNo_nat 2 x0) = eps_ x0 (proof)
Known exp_SNo_nat_Sexp_SNo_nat_S : ∀ x0 . SNo x0∀ x1 . nat_p x1exp_SNo_nat x0 (ordsucc x1) = mul_SNo x0 (exp_SNo_nat x0 x1)
Known nat_0nat_0 : nat_p 0
Known exp_SNo_nat_0exp_SNo_nat_0 : ∀ x0 . SNo x0exp_SNo_nat x0 0 = 1
Known mul_SNo_oneRmul_SNo_oneR : ∀ x0 . SNo x0mul_SNo x0 1 = x0
Theorem exp_SNo_nat_1exp_SNo_nat_1 : ∀ x0 . SNo x0exp_SNo_nat x0 1 = x0 (proof)
Known nat_1nat_1 : nat_p 1
Theorem recip_SNo_pos_2recip_SNo_pos_2 : recip_SNo_pos 2 = eps_ 1 (proof)
Param If_iIf_i : οιιι
Param minus_SNominus_SNo : ιι
Definition recip_SNorecip_SNo := λ x0 . If_i (SNoLt 0 x0) (recip_SNo_pos x0) (If_i (SNoLt x0 0) (minus_SNo (recip_SNo_pos (minus_SNo x0))) 0)
Known If_i_1If_i_1 : ∀ x0 : ο . ∀ x1 x2 . x0If_i x0 x1 x2 = x1
Theorem recip_SNo_poscaserecip_SNo_poscase : ∀ x0 . SNoLt 0 x0recip_SNo x0 = recip_SNo_pos x0 (proof)
Known If_i_0If_i_0 : ∀ x0 : ο . ∀ x1 x2 . not x0If_i x0 x1 x2 = x2
Theorem recip_SNo_negcaserecip_SNo_negcase : ∀ x0 . SNo x0SNoLt x0 0recip_SNo x0 = minus_SNo (recip_SNo_pos (minus_SNo x0)) (proof)
Theorem recip_SNo_0recip_SNo_0 : recip_SNo 0 = 0 (proof)
Theorem recip_SNo_1recip_SNo_1 : recip_SNo 1 = 1 (proof)
Known SNo_minus_SNoSNo_minus_SNo : ∀ x0 . SNo x0SNo (minus_SNo x0)
Known minus_SNo_Lt_contra2minus_SNo_Lt_contra2 : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 (minus_SNo x1)SNoLt x1 (minus_SNo x0)
Known minus_SNo_0minus_SNo_0 : minus_SNo 0 = 0
Theorem SNo_recip_SNoSNo_recip_SNo : ∀ x0 . SNo x0SNo (recip_SNo x0) (proof)
Known mul_SNo_minus_distrRmul_minus_SNo_distrR : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 (minus_SNo x1) = minus_SNo (mul_SNo x0 x1)
Known mul_SNo_minus_distrLmul_SNo_minus_distrL : ∀ x0 x1 . SNo x0SNo x1mul_SNo (minus_SNo x0) x1 = minus_SNo (mul_SNo x0 x1)
Theorem recip_SNo_invRrecip_SNo_invR : ∀ x0 . SNo x0(x0 = 0∀ x1 : ο . x1)mul_SNo x0 (recip_SNo x0) = 1 (proof)
Theorem recip_SNo_invLrecip_SNo_invL : ∀ x0 . SNo x0(x0 = 0∀ x1 : ο . x1)mul_SNo (recip_SNo x0) x0 = 1 (proof)
Theorem recip_SNo_eps_recip_SNo_eps_ : ∀ x0 . nat_p x0recip_SNo (eps_ x0) = exp_SNo_nat 2 x0 (proof)
Known exp_SNo_nat_posexp_SNo_nat_pos : ∀ x0 . SNo x0SNoLt 0 x0∀ x1 . nat_p x1SNoLt 0 (exp_SNo_nat x0 x1)
Known SNoLt_0_2SNoLt_0_2 : SNoLt 0 2
Theorem recip_SNo_pow_2recip_SNo_pow_2 : ∀ x0 . nat_p x0recip_SNo (exp_SNo_nat 2 x0) = eps_ x0 (proof)
Theorem recip_SNo_2recip_SNo_2 : recip_SNo 2 = eps_ 1 (proof)
Known minus_SNo_Lt_contra1minus_SNo_Lt_contra1 : ∀ x0 x1 . SNo x0SNo x1SNoLt (minus_SNo x0) x1SNoLt (minus_SNo x1) x0
Known minus_SNo_involminus_SNo_invol : ∀ x0 . SNo x0minus_SNo (minus_SNo x0) = x0
Theorem recip_SNo_involrecip_SNo_invol : ∀ x0 . SNo x0recip_SNo (recip_SNo x0) = x0 (proof)
Theorem recip_SNo_of_pos_is_posrecip_SNo_of_pos_is_pos : ∀ x0 . SNo x0SNoLt 0 x0SNoLt 0 (recip_SNo x0) (proof)
Theorem recip_SNo_of_neg_is_negrecip_SNo_of_neg_is_neg : ∀ x0 . SNo x0SNoLt x0 0SNoLt (recip_SNo x0) 0 (proof)
Definition div_SNodiv_SNo := λ x0 x1 . mul_SNo x0 (recip_SNo x1)
Known SNo_mul_SNoSNo_mul_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (mul_SNo x0 x1)
Theorem SNo_div_SNoSNo_div_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (div_SNo x0 x1) (proof)
Known mul_SNo_zeroLmul_SNo_zeroL : ∀ x0 . SNo x0mul_SNo 0 x0 = 0
Theorem div_SNo_0_numdiv_SNo_0_num : ∀ x0 . SNo x0div_SNo 0 x0 = 0 (proof)
Theorem div_SNo_0_denumdiv_SNo_0_denum : ∀ x0 . SNo x0div_SNo x0 0 = 0 (proof)
Known mul_SNo_assocmul_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (mul_SNo x1 x2) = mul_SNo (mul_SNo x0 x1) x2
Theorem mul_div_SNo_invLmul_div_SNo_invL : ∀ x0 x1 . SNo x0SNo x1(x1 = 0∀ x2 : ο . x2)mul_SNo (div_SNo x0 x1) x1 = x0 (proof)
Theorem mul_div_SNo_invRmul_div_SNo_invR : ∀ x0 x1 . SNo x0SNo x1(x1 = 0∀ x2 : ο . x2)mul_SNo x1 (div_SNo x0 x1) = x0 (proof)
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Theorem mul_div_SNo_Rmul_div_SNo_R : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo (div_SNo x0 x1) x2 = div_SNo (mul_SNo x0 x2) x1 (proof)
Theorem mul_div_SNo_Lmul_div_SNo_L : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x2 (div_SNo x0 x1) = div_SNo (mul_SNo x2 x0) x1 (proof)
Theorem div_mul_SNo_invLdiv_mul_SNo_invL : ∀ x0 x1 . SNo x0SNo x1(x1 = 0∀ x2 : ο . x2)div_SNo (mul_SNo x0 x1) x1 = x0 (proof)
Theorem div_div_SNodiv_div_SNo : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2div_SNo (div_SNo x0 x1) x2 = div_SNo x0 (mul_SNo x1 x2) (proof)
Theorem mul_div_SNo_bothmul_div_SNo_both : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3mul_SNo (div_SNo x0 x1) (div_SNo x2 x3) = div_SNo (mul_SNo x0 x2) (mul_SNo x1 x3) (proof)
Param SNoLeSNoLe : ιιο
Known SNoLtLe_orSNoLtLe_or : ∀ x0 x1 . SNo x0SNo x1or (SNoLt x0 x1) (SNoLe x1 x0)
Known SNoLtLe_traSNoLtLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLe x1 x2SNoLt x0 x2
Known nonneg_mul_SNo_Lenonneg_mul_SNo_Le : ∀ x0 x1 x2 . SNo x0SNoLe 0 x0SNo x1SNo x2SNoLe x1 x2SNoLe (mul_SNo x0 x1) (mul_SNo x0 x2)
Known SNoLtLeSNoLtLe : ∀ x0 x1 . SNoLt x0 x1SNoLe x0 x1
Theorem recip_SNo_pos_posrecip_SNo_pos_pos : ∀ x0 . SNo x0SNoLt 0 x0SNoLt 0 (recip_SNo_pos x0) (proof)
Theorem recip_SNo_of_neg_is_negrecip_SNo_of_neg_is_neg : ∀ x0 . SNo x0SNoLt x0 0SNoLt (recip_SNo x0) 0 (proof)
Known mul_SNo_pos_posmul_SNo_pos_pos : ∀ x0 x1 . SNo x0SNo x1SNoLt 0 x0SNoLt 0 x1SNoLt 0 (mul_SNo x0 x1)
Theorem div_SNo_pos_posdiv_SNo_pos_pos : ∀ x0 x1 . SNo x0SNo x1SNoLt 0 x0SNoLt 0 x1SNoLt 0 (div_SNo x0 x1) (proof)
Known mul_SNo_neg_negmul_SNo_neg_neg : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 0SNoLt x1 0SNoLt 0 (mul_SNo x0 x1)
Theorem div_SNo_neg_negdiv_SNo_neg_neg : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 0SNoLt x1 0SNoLt 0 (div_SNo x0 x1) (proof)
Theorem div_SNo_pos_negdiv_SNo_pos_neg : ∀ x0 x1 . SNo x0SNo x1SNoLt 0 x0SNoLt x1 0SNoLt (div_SNo x0 x1) 0 (proof)
Known mul_SNo_neg_posmul_SNo_neg_pos : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 0SNoLt 0 x1SNoLt (mul_SNo x0 x1) 0
Theorem div_SNo_neg_posdiv_SNo_neg_pos : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 0SNoLt 0 x1SNoLt (div_SNo x0 x1) 0 (proof)
Known pos_mul_SNo_Lt'pos_mul_SNo_Lt : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt 0 x2SNoLt x0 x1SNoLt (mul_SNo x0 x2) (mul_SNo x1 x2)
Theorem div_SNo_pos_LtLdiv_SNo_pos_LtL : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt 0 x1SNoLt x0 (mul_SNo x2 x1)SNoLt (div_SNo x0 x1) x2 (proof)
Theorem div_SNo_pos_LtRdiv_SNo_pos_LtR : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt 0 x1SNoLt (mul_SNo x2 x1) x0SNoLt x2 (div_SNo x0 x1) (proof)
Theorem div_SNo_pos_LtL'div_SNo_pos_LtL : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt 0 x1SNoLt (div_SNo x0 x1) x2SNoLt x0 (mul_SNo x2 x1) (proof)
Theorem div_SNo_pos_LtR'div_SNo_pos_LtR : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt 0 x1SNoLt x2 (div_SNo x0 x1)SNoLt (mul_SNo x2 x1) x0 (proof)
Theorem mul_div_SNo_nonzero_eqmul_div_SNo_nonzero_eq : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2(x1 = 0∀ x3 : ο . x3)x0 = mul_SNo x1 x2div_SNo x0 x1 = x2 (proof)
Param SNo_SNo_ : ιιο
Param SNoLevSNoLev : ιι
Known SNoLev_0_eq_0SNoLev_0_eq_0 : ∀ x0 . SNo x0SNoLev x0 = 0x0 = 0
Param ordinalordinal : ιο
Known SNo_SNoSNo_SNo : ∀ x0 . ordinal x0∀ x1 . SNo_ x0 x1SNo x1
Known ordinal_Emptyordinal_Empty : ordinal 0
Known SNoLev_uniq2SNoLev_uniq2 : ∀ x0 . ordinal x0∀ x1 . SNo_ x0 x1SNoLev x1 = x0
Theorem SNo_0_eq_0SNo_0_eq_0 : ∀ x0 . SNo_ 0 x0x0 = 0 (proof)
Param add_SNoadd_SNo : ιιι
Known add_SNo_1_1_2add_SNo_1_1_2 : add_SNo 1 1 = 2
Known mul_SNo_distrRmul_SNo_distrR : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo (add_SNo x0 x1) x2 = add_SNo (mul_SNo x0 x2) (mul_SNo x1 x2)
Known add_SNo_Lt2add_SNo_Lt2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x1 x2SNoLt (add_SNo x0 x1) (add_SNo x0 x2)
Theorem SNo_gt2_double_ltSSNo_gt2_double_ltS : ∀ x0 . SNo x0SNoLt 1 x0SNoLt (add_SNo x0 1) (mul_SNo 2 x0) (proof)
Param realreal : ι
Param SNoS_SNoS_ : ιι
Param abs_SNoabs_SNo : ιι
Known real_Ereal_E : ∀ x0 . x0real∀ x1 : ο . (SNo x0SNoLev x0ordsucc omegax0SNoS_ (ordsucc omega)SNoLt (minus_SNo omega) x0SNoLt x0 omega(∀ x2 . x2SNoS_ omega(∀ x3 . x3omegaSNoLt (abs_SNo (add_SNo x2 (minus_SNo x0))) (eps_ x3))x2 = x0)(∀ x2 . x2omega∀ x3 : ο . (∀ x4 . and (x4SNoS_ omega) (and (SNoLt x4 x0) (SNoLt x0 (add_SNo x4 (eps_ x2))))x3)x3)x1)x1
Known eps_0_1eps_0_1 : eps_ 0 = 1
Known SNoS_ESNoS_E : ∀ x0 . ordinal x0∀ x1 . x1SNoS_ x0∀ x2 : ο . (∀ x3 . and (x3x0) (SNo_ x3 x1)x2)x2
Known omega_ordinalomega_ordinal : ordinal omega
Known nat_indnat_ind : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1
Known SNoLeLt_traSNoLeLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x1SNoLt x1 x2SNoLt x0 x2
Known nat_p_SNonat_p_SNo : ∀ x0 . nat_p x0SNo x0
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known nat_ordsuccnat_ordsucc : ∀ x0 . nat_p x0nat_p (ordsucc x0)
Known omega_nat_pomega_nat_p : ∀ x0 . x0omeganat_p x0
Known SNo_add_SNoSNo_add_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (add_SNo x0 x1)
Known ordinal_SNoLev_max_2ordinal_SNoLev_max_2 : ∀ x0 . ordinal x0∀ x1 . SNo x1SNoLev x1ordsucc x0SNoLe x1 x0
Known nat_p_ordinalnat_p_ordinal : ∀ x0 . nat_p x0ordinal x0
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Known ordinal_In_Or_Subqordinal_In_Or_Subq : ∀ x0 x1 . ordinal x0ordinal x1or (x0x1) (x1x0)
Known SNoLev_ordinalSNoLev_ordinal : ∀ x0 . SNo x0ordinal (SNoLev x0)
Known ordsuccI1ordsuccI1 : ∀ x0 . x0ordsucc x0
Known set_extset_ext : ∀ x0 x1 . x0x1x1x0x0 = x1
Known Subq_traSubq_tra : ∀ x0 x1 x2 . x0x1x1x2x0x2
Known add_SNo_Lev_bdadd_SNo_Lev_bd : ∀ x0 x1 . SNo x0SNo x1SNoLev (add_SNo x0 x1)add_SNo (SNoLev x0) (SNoLev x1)
Known ordinal_SNoLevordinal_SNoLev : ∀ x0 . ordinal x0SNoLev x0 = x0
Known add_SNo_1_ordsuccadd_SNo_1_ordsucc : ∀ x0 . x0omegaadd_SNo x0 1 = ordsucc x0
Known Subq_refSubq_ref : ∀ x0 . x0x0
Known ordsuccI2ordsuccI2 : ∀ x0 . x0ordsucc x0
Theorem nonneg_real_nat_intervalnonneg_real_nat_interval : ∀ x0 . x0realSNoLe 0 x0∀ x1 : ο . (∀ x2 . and (x2omega) (and (SNoLe x2 x0) (SNoLt x0 (ordsucc x2)))x1)x1 (proof)
Param SepSep : ι(ιο) → ι
Param SNoLSNoL : ιι
Definition SNoL_posSNoL_pos := λ x0 . Sep (SNoL x0) (SNoLt 0)
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Known SNoS_ISNoS_I : ∀ x0 . ordinal x0∀ x1 x2 . x2x0SNo_ x2 x1x1SNoS_ x0
Known ordinal_SNo_ordinal_SNo_ : ∀ x0 . ordinal x0SNo_ x0 x0
Known add_SNo_0Ladd_SNo_0L : ∀ x0 . SNo x0add_SNo 0 x0 = x0
Known abs_SNo_minusabs_SNo_minus : ∀ x0 . SNo x0abs_SNo (minus_SNo x0) = abs_SNo x0
Known pos_abs_SNopos_abs_SNo : ∀ x0 . SNoLt 0 x0abs_SNo x0 = x0
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Known SNoL_ISNoL_I : ∀ x0 . SNo x0∀ x1 . SNo x1SNoLev x1SNoLev x0SNoLt x1 x0x1SNoL x0
Known pos_low_eq_onepos_low_eq_one : ∀ x0 . SNo x0SNoLt 0 x0SNoLev x01x0 = 1
Known nat_invnat_inv : ∀ x0 . nat_p x0or (x0 = 0) (∀ x1 : ο . (∀ x2 . and (nat_p x2) (x0 = ordsucc x2)x1)x1)
Known SNoLeESNoLeE : ∀ x0 x1 . SNo x0SNo x1SNoLe x0 x1or (SNoLt x0 x1) (x0 = x1)
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Known cases_2cases_2 : ∀ x0 . x02∀ x1 : ι → ο . x1 0x1 1x1 x0
Known ordinal_SNoLt_Inordinal_SNoLt_In : ∀ x0 x1 . ordinal x0ordinal x1SNoLt x0 x1x0x1
Known nat_2nat_2 : nat_p 2
Known neq_ordsucc_0neq_ordsucc_0 : ∀ x0 . ordsucc x0 = 0∀ x1 : ο . x1
Known ordsucc_injordsucc_inj : ∀ x0 x1 . ordsucc x0 = ordsucc x1x0 = x1
Known ordinal_ordsucc_SNo_eqordinal_ordsucc_SNo_eq : ∀ x0 . ordinal x0ordsucc x0 = add_SNo 1 x0
Known add_SNo_assocadd_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo (add_SNo x0 x1) x2
Known add_SNo_0Radd_SNo_0R : ∀ x0 . SNo x0add_SNo x0 0 = x0
Known add_SNo_Le2add_SNo_Le2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x1 x2SNoLe (add_SNo x0 x1) (add_SNo x0 x2)
Known ordinal_Subq_SNoLeordinal_Subq_SNoLe : ∀ x0 x1 . ordinal x0ordinal x1x0x1SNoLe x0 x1
Known Subq_EmptySubq_Empty : ∀ x0 . 0x0
Known ordinal_In_SNoLtordinal_In_SNoLt : ∀ x0 . ordinal x0∀ x1 . x1x0SNoLt x1 x0
Known SNoLe_refSNoLe_ref : ∀ x0 . SNoLe x0 x0
Known ordinal_trichotomy_or_impredordinal_trichotomy_or_impred : ∀ x0 x1 . ordinal x0ordinal x1∀ x2 : ο . (x0x1x2)(x0 = x1x2)(x1x0x2)x2
Known ordinal_SNoLev_maxordinal_SNoLev_max : ∀ x0 . ordinal x0∀ x1 . SNo x1SNoLev x1x0SNoLt x1 x0
Known add_SNo_Lt1add_SNo_Lt1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x2SNoLt (add_SNo x0 x1) (add_SNo x2 x1)
Known SNoLt_1_2SNoLt_1_2 : SNoLt 1 2
Param binintersectbinintersect : ιιι
Definition iffiff := λ x0 x1 : ο . and (x0x1) (x1x0)
Definition PNoEq_PNoEq_ := λ x0 . λ x1 x2 : ι → ο . ∀ x3 . x3x0iff (x1 x3) (x2 x3)
Definition SNoEq_SNoEq_ := λ x0 x1 x2 . PNoEq_ x0 (λ x3 . x3x1) (λ x3 . x3x2)
Definition nInnIn := λ x0 x1 . not (x0x1)
Known SNoLtESNoLtE : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 x1∀ x2 : ο . (∀ x3 . SNo x3SNoLev x3binintersect (SNoLev x0) (SNoLev x1)SNoEq_ (SNoLev x3) x3 x0SNoEq_ (SNoLev x3) x3 x1SNoLt x0 x3SNoLt x3 x1nIn (SNoLev x3) x0SNoLev x3x1x2)(SNoLev x0SNoLev x1SNoEq_ (SNoLev x0) x0 x1SNoLev x0x1x2)(SNoLev x1SNoLev x0SNoEq_ (SNoLev x1) x0 x1nIn (SNoLev x1) x0x2)x2
Known eps_ordinal_In_eq_0eps_ordinal_In_eq_0 : ∀ x0 x1 . ordinal x1x1eps_ x0x1 = 0
Known SNoLev_eps_SNoLev_eps_ : ∀ x0 . x0omegaSNoLev (eps_ x0) = ordsucc x0
Known ordsuccEordsuccE : ∀ x0 x1 . x1ordsucc x0or (x1x0) (x1 = x0)
Known binintersectE1binintersectE1 : ∀ x0 x1 x2 . x2binintersect x0 x1x2x0
Known In_no2cycleIn_no2cycle : ∀ x0 x1 . x0x1x1x0False
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Known eps_ordsucc_half_addeps_ordsucc_half_add : ∀ x0 . nat_p x0add_SNo (eps_ (ordsucc x0)) (eps_ (ordsucc x0)) = eps_ x0
Known omega_ordsuccomega_ordsucc : ∀ x0 . x0omegaordsucc x0omega
Theorem pos_real_left_approx_doublepos_real_left_approx_double : ∀ x0 . x0realSNoLt 0 x0(x0 = 2∀ x1 : ο . x1)(∀ x1 . x1omegax0 = eps_ x1∀ x2 : ο . x2)∀ x1 : ο . (∀ x2 . and (x2SNoL_pos x0) (SNoLt x0 (mul_SNo 2 x2))x1)x1 (proof)
Param sqrt_SNo_nonnegsqrt_SNo_nonneg : ιι
Param apap : ιιι
Param SNo_sqrtauxSNo_sqrtaux : ι(ιι) → ιι
Param lamSigma : ι(ιι) → ι
Definition SNoL_nonnegSNoL_nonneg := λ x0 . Sep (SNoL x0) (SNoLe 0)
Param SNoRSNoR : ιι
Known SNo_sqrtaux_0SNo_sqrtaux_0 : ∀ x0 . ∀ x1 : ι → ι . SNo_sqrtaux x0 x1 0 = lam 2 (λ x3 . If_i (x3 = 0) (prim5 (SNoL_nonneg x0) x1) (prim5 (SNoR x0) x1))
Known tuple_2_0_eqtuple_2_0_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 0 = x0
Known ReplE_impredReplE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2prim5 x0 x1∀ x3 : ο . (∀ x4 . x4x0x2 = x1 x4x3)x3
Known SepESepE : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1and (x2x0) (x1 x2)
Known SNoL_ESNoL_E : ∀ x0 . SNo x0∀ x1 . x1SNoL x0∀ x2 : ο . (SNo x1SNoLev x1SNoLev x0SNoLt x1 x0x2)x2
Known SNoS_I2SNoS_I2 : ∀ x0 x1 . SNo x0SNo x1SNoLev x0SNoLev x1x0SNoS_ (SNoLev x1)
Known tuple_2_1_eqtuple_2_1_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 1 = x1
Known SNoR_ESNoR_E : ∀ x0 . SNo x0∀ x1 . x1SNoR x0∀ x2 : ο . (SNo x1SNoLev x1SNoLev x0SNoLt x0 x1x2)x2
Known SNoLe_traSNoLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x1SNoLe x1 x2SNoLe x0 x2
Param binunionbinunion : ιιι
Param SNo_sqrtauxsetSNo_sqrtauxset : ιιιι
Known SNo_sqrtaux_SSNo_sqrtaux_S : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . nat_p x2SNo_sqrtaux x0 x1 (ordsucc x2) = lam 2 (λ x4 . If_i (x4 = 0) (binunion (ap (SNo_sqrtaux x0 x1 x2) 0) (SNo_sqrtauxset (ap (SNo_sqrtaux x0 x1 x2) 0) (ap (SNo_sqrtaux x0 x1 x2) 1) x0)) (binunion (binunion (ap (SNo_sqrtaux x0 x1 x2) 1) (SNo_sqrtauxset (ap (SNo_sqrtaux x0 x1 x2) 0) (ap (SNo_sqrtaux x0 x1 x2) 0) x0)) (SNo_sqrtauxset (ap (SNo_sqrtaux x0 x1 x2) 1) (ap (SNo_sqrtaux x0 x1 x2) 1) x0)))
Known binunionE'binunionE : ∀ x0 x1 x2 . ∀ x3 : ο . (x2x0x3)(x2x1x3)x2binunion x0 x1x3
Known SNo_sqrtauxset_ESNo_sqrtauxset_E : ∀ x0 x1 x2 x3 . x3SNo_sqrtauxset x0 x1 x2∀ x4 : ο . (∀ x5 . x5x0∀ x6 . x6x1SNoLt 0 (add_SNo x5 x6)x3 = div_SNo (add_SNo x2 (mul_SNo x5 x6)) (add_SNo x5 x6)x4)x4
Known add_SNo_Le3add_SNo_Le3 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLe x0 x2SNoLe x1 x3SNoLe (add_SNo x0 x1) (add_SNo x2 x3)
Known mul_SNo_nonneg_nonnegmul_SNo_nonneg_nonneg : ∀ x0 x1 . SNo x0SNo x1SNoLe 0 x0SNoLe 0 x1SNoLe 0 (mul_SNo x0 x1)
Known SNo_foilSNo_foil : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3mul_SNo (add_SNo x0 x1) (add_SNo x2 x3) = add_SNo (mul_SNo x0 x2) (add_SNo (mul_SNo x0 x3) (add_SNo (mul_SNo x1 x2) (mul_SNo x1 x3)))
Known add_SNo_rotate_4_1add_SNo_rotate_4_1 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3add_SNo x0 (add_SNo x1 (add_SNo x2 x3)) = add_SNo x3 (add_SNo x0 (add_SNo x1 x2))
Known mul_SNo_distrLmul_SNo_distrL : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (add_SNo x1 x2) = add_SNo (mul_SNo x0 x1) (mul_SNo x0 x2)
Known SNo_add_SNo_3SNo_add_SNo_3 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNo (add_SNo x0 (add_SNo x1 x2))
Known add_SNo_minus_Lt2add_SNo_minus_Lt2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x2 (add_SNo x0 (minus_SNo x1))SNoLt (add_SNo x2 x1) x0
Known minus_add_SNo_distrminus_add_SNo_distr : ∀ x0 x1 . SNo x0SNo x1minus_SNo (add_SNo x0 x1) = add_SNo (minus_SNo x0) (minus_SNo x1)
Known add_SNo_rotate_3_1add_SNo_rotate_3_1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo x2 (add_SNo x0 x1)
Known add_SNo_comadd_SNo_com : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 x1 = add_SNo x1 x0
Known mul_SNo_com_3_0_1mul_SNo_com_3_0_1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (mul_SNo x1 x2) = mul_SNo x1 (mul_SNo x0 x2)
Known SNo_foil_mmSNo_foil_mm : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3mul_SNo (add_SNo x0 (minus_SNo x1)) (add_SNo x2 (minus_SNo x3)) = add_SNo (mul_SNo x0 x2) (add_SNo (minus_SNo (mul_SNo x0 x3)) (add_SNo (minus_SNo (mul_SNo x1 x2)) (mul_SNo x1 x3)))
Known SNoLt_minus_posSNoLt_minus_pos : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 x1SNoLt 0 (add_SNo x1 (minus_SNo x0))
Known SNo_mul_SNo_3SNo_mul_SNo_3 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNo (mul_SNo x0 (mul_SNo x1 x2))
Known add_SNo_minus_Lt1add_SNo_minus_Lt1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt (add_SNo x0 (minus_SNo x1)) x2SNoLt x0 (add_SNo x2 x1)
Known add_SNo_minus_Lt1badd_SNo_minus_Lt1b : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 (add_SNo x2 x1)SNoLt (add_SNo x0 (minus_SNo x1)) x2
Theorem sqrt_SNo_nonneg_prop1asqrt_SNo_nonneg_prop1a : ∀ x0 . SNo x0SNoLe 0 x0(∀ x1 . x1SNoS_ (SNoLev x0)SNoLe 0 x1and (and (SNo (sqrt_SNo_nonneg x1)) (SNoLe 0 (sqrt_SNo_nonneg x1))) (mul_SNo (sqrt_SNo_nonneg x1) (sqrt_SNo_nonneg x1) = x1))∀ x1 . nat_p x1and (∀ x2 . x2ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x1) 0and (and (SNo x2) (SNoLe 0 x2)) (SNoLt (mul_SNo x2 x2) x0)) (∀ x2 . x2ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x1) 1and (and (SNo x2) (SNoLe 0 x2)) (SNoLt x0 (mul_SNo x2 x2))) (proof)
Definition SNoCutPSNoCutP := λ x0 x1 . and (and (∀ x2 . x2x0SNo x2) (∀ x2 . x2x1SNo x2)) (∀ x2 . x2x0∀ x3 . x3x1SNoLt x2 x3)
Param famunionfamunion : ι(ιι) → ι
Known famunionE_impredfamunionE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2famunion x0 x1∀ x3 : ο . (∀ x4 . x4x0x2x1 x4x3)x3
Known nonneg_mul_SNo_Le2nonneg_mul_SNo_Le2 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLe 0 x0SNoLe 0 x1SNoLe x0 x2SNoLe x1 x3SNoLe (mul_SNo x0 x1) (mul_SNo x2 x3)
Theorem sqrt_SNo_nonneg_prop1bsqrt_SNo_nonneg_prop1b : ∀ x0 . SNo x0SNoLe 0 x0(∀ x1 . nat_p x1and (∀ x2 . x2ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x1) 0and (and (SNo x2) (SNoLe 0 x2)) (SNoLt (mul_SNo x2 x2) x0)) (∀ x2 . x2ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x1) 1and (and (SNo x2) (SNoLe 0 x2)) (SNoLt x0 (mul_SNo x2 x2))))SNoCutP (famunion omega (λ x1 . ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x1) 0)) (famunion omega (λ x1 . ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x1) 1)) (proof)

previous assets