Search for blocks/addresses/...
Proofgold Address
address
PUSaZtRcyNuswNX4iR5i5cm8N8Ms5bMFJ3B
total
0
mg
-
conjpub
-
current assets
6982b..
/
229e1..
bday:
18075
doc published by
Pr4zB..
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
u1
:=
1
Definition
u2
:=
ordsucc
u1
Definition
u3
:=
ordsucc
u2
Definition
u4
:=
ordsucc
u3
Definition
u5
:=
ordsucc
u4
Definition
u6
:=
ordsucc
u5
Definition
u7
:=
ordsucc
u6
Definition
u8
:=
ordsucc
u7
Definition
u9
:=
ordsucc
u8
Definition
u10
:=
ordsucc
u9
Definition
u11
:=
ordsucc
u10
Definition
u12
:=
ordsucc
u11
Definition
u13
:=
ordsucc
u12
Definition
u14
:=
ordsucc
u13
Definition
u15
:=
ordsucc
u14
Definition
u16
:=
ordsucc
u15
Definition
u17
:=
ordsucc
u16
Definition
u18
:=
ordsucc
u17
Definition
u19
:=
ordsucc
u18
Definition
u20
:=
ordsucc
u19
Definition
u21
:=
ordsucc
u20
Definition
u22
:=
ordsucc
u21
Definition
u23
:=
ordsucc
u22
Definition
u24
:=
ordsucc
u23
Definition
u25
:=
ordsucc
u24
Known
neq_ordsucc_0
neq_ordsucc_0
:
∀ x0 .
ordsucc
x0
=
0
⟶
∀ x1 : ο .
x1
Theorem
733b2..
:
u13
=
0
⟶
∀ x0 : ο .
x0
(proof)
Known
ordsucc_inj_contra
ordsucc_inj_contra
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
ordsucc
x0
=
ordsucc
x1
⟶
∀ x2 : ο .
x2
Known
efdfc..
:
u12
=
0
⟶
∀ x0 : ο .
x0
Theorem
16246..
:
u13
=
u1
⟶
∀ x0 : ο .
x0
(proof)
Known
ce0cd..
:
u12
=
u1
⟶
∀ x0 : ο .
x0
Theorem
40d25..
:
u13
=
u2
⟶
∀ x0 : ο .
x0
(proof)
Known
8158b..
:
u12
=
u2
⟶
∀ x0 : ο .
x0
Theorem
19222..
:
u13
=
u3
⟶
∀ x0 : ο .
x0
(proof)
Known
e015c..
:
u12
=
u3
⟶
∀ x0 : ο .
x0
Theorem
4d850..
:
u13
=
u4
⟶
∀ x0 : ο .
x0
(proof)
Known
7aa79..
:
u12
=
u4
⟶
∀ x0 : ο .
x0
Theorem
29333..
:
u13
=
u5
⟶
∀ x0 : ο .
x0
(proof)
Known
07eba..
:
u12
=
u5
⟶
∀ x0 : ο .
x0
Theorem
02f5c..
:
u13
=
u6
⟶
∀ x0 : ο .
x0
(proof)
Known
0bd83..
:
u12
=
u6
⟶
∀ x0 : ο .
x0
Theorem
d9b35..
:
u13
=
u7
⟶
∀ x0 : ο .
x0
(proof)
Known
6a15f..
:
u12
=
u7
⟶
∀ x0 : ο .
x0
Theorem
0b225..
:
u13
=
u8
⟶
∀ x0 : ο .
x0
(proof)
Known
a6a6c..
:
u12
=
u8
⟶
∀ x0 : ο .
x0
Theorem
3f24c..
:
u13
=
u9
⟶
∀ x0 : ο .
x0
(proof)
Known
22885..
:
u12
=
u9
⟶
∀ x0 : ο .
x0
Theorem
78358..
:
u13
=
u10
⟶
∀ x0 : ο .
x0
(proof)
Known
6c583..
:
u12
=
u10
⟶
∀ x0 : ο .
x0
Theorem
bf497..
:
u13
=
u11
⟶
∀ x0 : ο .
x0
(proof)
Known
ab306..
:
u12
=
u11
⟶
∀ x0 : ο .
x0
Theorem
ad02f..
:
u13
=
u12
⟶
∀ x0 : ο .
x0
(proof)
Theorem
fc551..
:
u14
=
0
⟶
∀ x0 : ο .
x0
(proof)
Theorem
ac679..
:
u14
=
u1
⟶
∀ x0 : ο .
x0
(proof)
Theorem
0bb18..
:
u14
=
u2
⟶
∀ x0 : ο .
x0
(proof)
Theorem
d0fe4..
:
u14
=
u3
⟶
∀ x0 : ο .
x0
(proof)
Theorem
ffd62..
:
u14
=
u4
⟶
∀ x0 : ο .
x0
(proof)
Theorem
d6c57..
:
u14
=
u5
⟶
∀ x0 : ο .
x0
(proof)
Theorem
62d80..
:
u14
=
u6
⟶
∀ x0 : ο .
x0
(proof)
Theorem
01bf6..
:
u14
=
u7
⟶
∀ x0 : ο .
x0
(proof)
Theorem
4f6ad..
:
u14
=
u8
⟶
∀ x0 : ο .
x0
(proof)
Theorem
d7730..
:
u14
=
u9
⟶
∀ x0 : ο .
x0
(proof)
Theorem
f5ab5..
:
u14
=
u10
⟶
∀ x0 : ο .
x0
(proof)
Theorem
4e1aa..
:
u14
=
u11
⟶
∀ x0 : ο .
x0
(proof)
Theorem
ef4da..
:
u14
=
u12
⟶
∀ x0 : ο .
x0
(proof)
Theorem
e1947..
:
u14
=
u13
⟶
∀ x0 : ο .
x0
(proof)
Theorem
160ad..
:
u15
=
0
⟶
∀ x0 : ο .
x0
(proof)
Theorem
174d1..
:
u15
=
u1
⟶
∀ x0 : ο .
x0
(proof)
Theorem
4d715..
:
u15
=
u2
⟶
∀ x0 : ο .
x0
(proof)
Theorem
70124..
:
u15
=
u3
⟶
∀ x0 : ο .
x0
(proof)
Theorem
4b742..
:
u15
=
u4
⟶
∀ x0 : ο .
x0
(proof)
Theorem
24fad..
:
u15
=
u5
⟶
∀ x0 : ο .
x0
(proof)
Theorem
f5ac7..
:
u15
=
u6
⟶
∀ x0 : ο .
x0
(proof)
Theorem
008b1..
:
u15
=
u7
⟶
∀ x0 : ο .
x0
(proof)
Theorem
c0d75..
:
u15
=
u8
⟶
∀ x0 : ο .
x0
(proof)
Theorem
3a7bc..
:
u15
=
u9
⟶
∀ x0 : ο .
x0
(proof)
Theorem
b7f53..
:
u15
=
u10
⟶
∀ x0 : ο .
x0
(proof)
Theorem
9c5db..
:
u15
=
u11
⟶
∀ x0 : ο .
x0
(proof)
Theorem
72647..
:
u15
=
u12
⟶
∀ x0 : ο .
x0
(proof)
Theorem
4d8d4..
:
u15
=
u13
⟶
∀ x0 : ο .
x0
(proof)
Theorem
b8e82..
:
u15
=
u14
⟶
∀ x0 : ο .
x0
(proof)
Theorem
86ae3..
:
u16
=
0
⟶
∀ x0 : ο .
x0
(proof)
Theorem
ab690..
:
u16
=
u1
⟶
∀ x0 : ο .
x0
(proof)
Theorem
296ac..
:
u16
=
u2
⟶
∀ x0 : ο .
x0
(proof)
Theorem
ca5c3..
:
u16
=
u3
⟶
∀ x0 : ο .
x0
(proof)
Theorem
7b2eb..
:
u16
=
u4
⟶
∀ x0 : ο .
x0
(proof)
Theorem
35bff..
:
u16
=
u5
⟶
∀ x0 : ο .
x0
(proof)
Theorem
3bd28..
:
u16
=
u6
⟶
∀ x0 : ο .
x0
(proof)
Theorem
d3a2f..
:
u16
=
u7
⟶
∀ x0 : ο .
x0
(proof)
Theorem
6c306..
:
u16
=
u8
⟶
∀ x0 : ο .
x0
(proof)
Theorem
78b49..
:
u16
=
u9
⟶
∀ x0 : ο .
x0
(proof)
Theorem
6879f..
:
u16
=
u10
⟶
∀ x0 : ο .
x0
(proof)
Theorem
22184..
:
u16
=
u11
⟶
∀ x0 : ο .
x0
(proof)
Theorem
fa664..
:
u16
=
u12
⟶
∀ x0 : ο .
x0
(proof)
Theorem
4326e..
:
u16
=
u13
⟶
∀ x0 : ο .
x0
(proof)
Theorem
71c5e..
:
u16
=
u14
⟶
∀ x0 : ο .
x0
(proof)
Theorem
41073..
:
u16
=
u15
⟶
∀ x0 : ο .
x0
(proof)
Theorem
fcaf7..
:
u17
=
0
⟶
∀ x0 : ο .
x0
(proof)
Theorem
d4359..
:
u17
=
u1
⟶
∀ x0 : ο .
x0
(proof)
Theorem
2c536..
:
u17
=
u2
⟶
∀ x0 : ο .
x0
(proof)
Theorem
6c299..
:
u17
=
u3
⟶
∀ x0 : ο .
x0
(proof)
Theorem
506a9..
:
u17
=
u4
⟶
∀ x0 : ο .
x0
(proof)
Theorem
4ab36..
:
u17
=
u5
⟶
∀ x0 : ο .
x0
(proof)
Theorem
b74f3..
:
u17
=
u6
⟶
∀ x0 : ο .
x0
(proof)
Theorem
66c81..
:
u17
=
u7
⟶
∀ x0 : ο .
x0
(proof)
Theorem
dc9e6..
:
u17
=
u8
⟶
∀ x0 : ο .
x0
(proof)
Theorem
66dfd..
:
u17
=
u9
⟶
∀ x0 : ο .
x0
(proof)
Theorem
2e5d5..
:
u17
=
u10
⟶
∀ x0 : ο .
x0
(proof)
Theorem
454a8..
:
u17
=
u11
⟶
∀ x0 : ο .
x0
(proof)
Theorem
9a69f..
:
u17
=
u12
⟶
∀ x0 : ο .
x0
(proof)
Theorem
30174..
:
u17
=
u13
⟶
∀ x0 : ο .
x0
(proof)
Theorem
82608..
:
u17
=
u14
⟶
∀ x0 : ο .
x0
(proof)
Theorem
ac12b..
:
u17
=
u15
⟶
∀ x0 : ο .
x0
(proof)
Theorem
7fbc8..
:
u17
=
u16
⟶
∀ x0 : ο .
x0
(proof)
Theorem
99743..
:
u18
=
0
⟶
∀ x0 : ο .
x0
(proof)
Theorem
9ccac..
:
u18
=
u1
⟶
∀ x0 : ο .
x0
(proof)
Theorem
ad866..
:
u18
=
u2
⟶
∀ x0 : ο .
x0
(proof)
Theorem
1f012..
:
u18
=
u3
⟶
∀ x0 : ο .
x0
(proof)
Theorem
60e5c..
:
u18
=
u4
⟶
∀ x0 : ο .
x0
(proof)
Theorem
ac512..
:
u18
=
u5
⟶
∀ x0 : ο .
x0
(proof)
Theorem
8347f..
:
u18
=
u6
⟶
∀ x0 : ο .
x0
(proof)
Theorem
c9d3b..
:
u18
=
u7
⟶
∀ x0 : ο .
x0
(proof)
Theorem
d47e8..
:
u18
=
u8
⟶
∀ x0 : ο .
x0
(proof)
Theorem
d3922..
:
u18
=
u9
⟶
∀ x0 : ο .
x0
(proof)
Theorem
a335e..
:
u18
=
u10
⟶
∀ x0 : ο .
x0
(proof)
Theorem
8da43..
:
u18
=
u11
⟶
∀ x0 : ο .
x0
(proof)
Theorem
c1bd9..
:
u18
=
u12
⟶
∀ x0 : ο .
x0
(proof)
Theorem
5cb8a..
:
u18
=
u13
⟶
∀ x0 : ο .
x0
(proof)
Theorem
d92fd..
:
u18
=
u14
⟶
∀ x0 : ο .
x0
(proof)
Theorem
dfba1..
:
u18
=
u15
⟶
∀ x0 : ο .
x0
(proof)
Theorem
0eaf4..
:
u18
=
u16
⟶
∀ x0 : ο .
x0
(proof)
Theorem
82c6a..
:
u18
=
u17
⟶
∀ x0 : ο .
x0
(proof)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Known
6de8d..
:
∀ x0 .
x0
∈
u13
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
u3
⟶
x1
u4
⟶
x1
u5
⟶
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
u11
⟶
x1
u12
⟶
x1
x0
Theorem
dca77..
:
∀ x0 .
x0
∈
u14
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
u3
⟶
x1
u4
⟶
x1
u5
⟶
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
u11
⟶
x1
u12
⟶
x1
u13
⟶
x1
x0
(proof)
Theorem
f3498..
:
∀ x0 .
x0
∈
u15
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
u3
⟶
x1
u4
⟶
x1
u5
⟶
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
u11
⟶
x1
u12
⟶
x1
u13
⟶
x1
u14
⟶
x1
x0
(proof)
Theorem
660da..
:
∀ x0 .
x0
∈
u16
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
u3
⟶
x1
u4
⟶
x1
u5
⟶
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
u11
⟶
x1
u12
⟶
x1
u13
⟶
x1
u14
⟶
x1
u15
⟶
x1
x0
(proof)
Theorem
66f20..
:
∀ x0 .
x0
∈
u17
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
u3
⟶
x1
u4
⟶
x1
u5
⟶
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
u11
⟶
x1
u12
⟶
x1
u13
⟶
x1
u14
⟶
x1
u15
⟶
x1
u16
⟶
x1
x0
(proof)
Theorem
f9732..
:
∀ x0 .
x0
∈
u18
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
u3
⟶
x1
u4
⟶
x1
u5
⟶
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
u11
⟶
x1
u12
⟶
x1
u13
⟶
x1
u14
⟶
x1
u15
⟶
x1
u16
⟶
x1
u17
⟶
x1
x0
(proof)
Theorem
27a71..
:
∀ x0 .
x0
∈
u19
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
u3
⟶
x1
u4
⟶
x1
u5
⟶
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
u11
⟶
x1
u12
⟶
x1
u13
⟶
x1
u14
⟶
x1
u15
⟶
x1
u16
⟶
x1
u17
⟶
x1
u18
⟶
x1
x0
(proof)
previous assets