current assets |
---|
03d37../efee5.. bday: 24822 doc published by Pr5Zc..Known 45f87.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x1 x2 (x1 x3 (x1 x4 x5)) = x1 x3 (x1 x4 (x1 x2 x5))Theorem 60e4a.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x1 x2 (x1 x3 (x1 x4 x5)) = x1 x3 (x1 x4 (x1 x2 x5)) (proof)Known 93eac.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 x6))) = x1 x3 (x1 x4 (x1 x5 (x1 x2 x6)))Theorem 6024d.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 x6))) = x1 x3 (x1 x4 (x1 x5 (x1 x2 x6))) (proof)Known 75b00.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x7)))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x2 x7))))Theorem b4a61.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x7)))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x2 x7)))) (proof)Known c0c54.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x8))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x2 x8)))))Theorem 9b1f7.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x8))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x2 x8))))) (proof)Known cbdc2.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x2 x9))))))Theorem 36b70.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x2 x9)))))) (proof)Known d3eb2.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 x10))))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x2 x10)))))))Theorem 792e4.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 x10))))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x2 x10))))))) (proof)Known 2a73e.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 x11)))))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x2 x11))))))))Theorem 59e4d.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 x11)))))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x2 x11)))))))) (proof)Known 4c672.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 x12))))))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x2 x12)))))))))Theorem 32c8a.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 x12))))))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x2 x12))))))))) (proof)Known 000b3.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 x13)))))))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x2 x13))))))))))Theorem 542d7.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 x13)))))))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x2 x13)))))))))) (proof)Known 495ba.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 x14))))))))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x2 x14)))))))))))Theorem 54f3e.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 x14))))))))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x2 x14))))))))))) (proof)Known a1ee1.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 x15)))))))))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x2 x15))))))))))))Theorem 689e8.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 x15)))))))))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x2 x15)))))))))))) (proof)Known 0c618.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 x16))))))))))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x2 x16)))))))))))))Theorem eb077.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 x16))))))))))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x2 x16))))))))))))) (proof)Known 92560.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 x17)))))))))))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x2 x17))))))))))))))Theorem dee36.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 x17)))))))))))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x2 x17)))))))))))))) (proof)Known 30837.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x0 x18 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 x18))))))))))))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 (x1 x2 x18)))))))))))))))Theorem dad49.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x0 x18 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 x18))))))))))))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 (x1 x2 x18))))))))))))))) (proof)Known 0d20b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 x6))) = x1 x4 (x1 x5 (x1 x2 (x1 x3 x6)))Theorem 28124.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 x6))) = x1 x4 (x1 x5 (x1 x2 (x1 x3 x6))) (proof)Known f87dc.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x7)))) = x1 x4 (x1 x5 (x1 x6 (x1 x2 (x1 x3 x7))))Theorem c9f83.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x7)))) = x1 x4 (x1 x5 (x1 x6 (x1 x2 (x1 x3 x7)))) (proof)Known 3a13f.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x8))))) = x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x2 (x1 x3 x8)))))Theorem a6071.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x8))))) = x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x2 (x1 x3 x8))))) (proof)Known 209c8.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x8))))) = x1 x5 (x1 x6 (x1 x7 (x1 x2 (x1 x3 (x1 x4 x8)))))Theorem 50110.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x8))))) = x1 x5 (x1 x6 (x1 x7 (x1 x2 (x1 x3 (x1 x4 x8))))) (proof)Known df7cd.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x2 (x1 x3 x9))))))Theorem 447df.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x2 (x1 x3 x9)))))) (proof)Known 9fbf6.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x2 (x1 x3 (x1 x4 x9))))))Theorem 62596.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x2 (x1 x3 (x1 x4 x9)))))) (proof)Known 9ba1d.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 x10))))))) = x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x2 (x1 x3 x10)))))))Theorem 72787.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 x10))))))) = x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x2 (x1 x3 x10))))))) (proof)Known d3b5b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 x10))))))) = x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x2 (x1 x3 (x1 x4 x10)))))))Theorem 98831.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 x10))))))) = x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x2 (x1 x3 (x1 x4 x10))))))) (proof)Known d63ce.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 x10))))))) = x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x2 (x1 x3 (x1 x4 (x1 x5 x10)))))))Theorem 5dd73.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 x10))))))) = x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x2 (x1 x3 (x1 x4 (x1 x5 x10))))))) (proof)Known 696da.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 x11)))))))) = x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x2 (x1 x3 x11))))))))Theorem a0be6.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 x11)))))))) = x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x2 (x1 x3 x11)))))))) (proof)Known 387d2.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 x11)))))))) = x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x2 (x1 x3 (x1 x4 x11))))))))Theorem 1eb59.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 x11)))))))) = x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x2 (x1 x3 (x1 x4 x11)))))))) (proof)Known 17b5e.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 x11)))))))) = x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x2 (x1 x3 (x1 x4 (x1 x5 x11))))))))Theorem b4695.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 x11)))))))) = x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x2 (x1 x3 (x1 x4 (x1 x5 x11)))))))) (proof)Known 0d9d2.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 x12))))))))) = x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x2 (x1 x3 x12)))))))))Theorem f675b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 x12))))))))) = x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x2 (x1 x3 x12))))))))) (proof)Known 30284.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 x12))))))))) = x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x2 (x1 x3 (x1 x4 x12)))))))))Theorem a40e8.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 x12))))))))) = x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x2 (x1 x3 (x1 x4 x12))))))))) (proof)Known 5a706.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 x12))))))))) = x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x2 (x1 x3 (x1 x4 (x1 x5 x12)))))))))Theorem d2263.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 x12))))))))) = x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x2 (x1 x3 (x1 x4 (x1 x5 x12))))))))) (proof)Known a8fd7.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 x12))))))))) = x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x12)))))))))Theorem f009b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 x12))))))))) = x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x12))))))))) (proof)Known 6f341.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 x13)))))))))) = x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x2 (x1 x3 x13))))))))))Theorem 1d6bf.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 x13)))))))))) = x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x2 (x1 x3 x13)))))))))) (proof)Known fb74d.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 x13)))))))))) = x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x2 (x1 x3 (x1 x4 x13))))))))))Theorem 2253a.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 x13)))))))))) = x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x2 (x1 x3 (x1 x4 x13)))))))))) (proof)Known 72568.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 x13)))))))))) = x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x2 (x1 x3 (x1 x4 (x1 x5 x13))))))))))Theorem 8db74.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 x13)))))))))) = x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x2 (x1 x3 (x1 x4 (x1 x5 x13)))))))))) (proof)Known 9bb69.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 x13)))))))))) = x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x13))))))))))Theorem c92b5.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 x13)))))))))) = x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x13)))))))))) (proof)Known 8e1b0.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 x14))))))))))) = x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x2 (x1 x3 x14)))))))))))Theorem 8b875.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 x14))))))))))) = x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x2 (x1 x3 x14))))))))))) (proof)Known 521cb.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 x14))))))))))) = x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x2 (x1 x3 (x1 x4 x14)))))))))))Theorem a298a.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 x14))))))))))) = x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x2 (x1 x3 (x1 x4 x14))))))))))) (proof)Known 9b328.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 x14))))))))))) = x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x2 (x1 x3 (x1 x4 (x1 x5 x14)))))))))))Theorem 2a04c.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 x14))))))))))) = x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x2 (x1 x3 (x1 x4 (x1 x5 x14))))))))))) (proof)Known 09a8d.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 x14))))))))))) = x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x14)))))))))))Theorem 343b8.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 x14))))))))))) = x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x14))))))))))) (proof)Known b4182.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 x14))))))))))) = x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x14)))))))))))Theorem c6ef2.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 x14))))))))))) = x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x14))))))))))) (proof)Known f1d76.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 x15)))))))))))) = x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x2 (x1 x3 x15))))))))))))Theorem 2dbc6.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 x15)))))))))))) = x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x2 (x1 x3 x15)))))))))))) (proof)Known 005bf.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 x15)))))))))))) = x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x2 (x1 x3 (x1 x4 x15))))))))))))Theorem 93b0c.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 x15)))))))))))) = x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x2 (x1 x3 (x1 x4 x15)))))))))))) (proof)Known 15bb0.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 x15)))))))))))) = x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x2 (x1 x3 (x1 x4 (x1 x5 x15))))))))))))Theorem c0afc.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 x15)))))))))))) = x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x2 (x1 x3 (x1 x4 (x1 x5 x15)))))))))))) (proof)Known 25f70.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 x15)))))))))))) = x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x15))))))))))))Theorem 71cd8.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 x15)))))))))))) = x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x15)))))))))))) (proof)Known 47a47.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 x15)))))))))))) = x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x15))))))))))))Theorem b48c0.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 x15)))))))))))) = x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x15)))))))))))) (proof)Known 92fce.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 x16))))))))))))) = x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x2 (x1 x3 x16)))))))))))))Theorem e7257.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 x16))))))))))))) = x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x2 (x1 x3 x16))))))))))))) (proof)Known f7ca7.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 x16))))))))))))) = x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x2 (x1 x3 (x1 x4 x16)))))))))))))Theorem 285b4.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 x16))))))))))))) = x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x2 (x1 x3 (x1 x4 x16))))))))))))) (proof)Known 65a4d.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 x16))))))))))))) = x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x2 (x1 x3 (x1 x4 (x1 x5 x16)))))))))))))Theorem 5aea4.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 x16))))))))))))) = x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x2 (x1 x3 (x1 x4 (x1 x5 x16))))))))))))) (proof)Known 8a1ac.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 x16))))))))))))) = x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x16)))))))))))))Theorem 4a237.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 x16))))))))))))) = x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x16))))))))))))) (proof)Known 14bac.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 x16))))))))))))) = x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x16)))))))))))))Theorem 0057a.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 x16))))))))))))) = x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x16))))))))))))) (proof)Known 56712.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 x16))))))))))))) = x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x16)))))))))))))Theorem 74adf.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 x16))))))))))))) = x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x16))))))))))))) (proof)Known d4a91.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 x17)))))))))))))) = x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x2 (x1 x3 x17))))))))))))))Theorem 09f31.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 x17)))))))))))))) = x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x2 (x1 x3 x17)))))))))))))) (proof)Known cdec3.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 x17)))))))))))))) = x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x2 (x1 x3 (x1 x4 x17))))))))))))))Theorem 15cd1.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 x17)))))))))))))) = x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x2 (x1 x3 (x1 x4 x17)))))))))))))) (proof)Known 55afc.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 x17)))))))))))))) = x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x2 (x1 x3 (x1 x4 (x1 x5 x17))))))))))))))Theorem 31b2f.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 x17)))))))))))))) = x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x2 (x1 x3 (x1 x4 (x1 x5 x17)))))))))))))) (proof)Known 78083.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 x17)))))))))))))) = x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x17))))))))))))))Theorem e06ab.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 x17)))))))))))))) = x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x17)))))))))))))) (proof)Known 82de4.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 x17)))))))))))))) = x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x17))))))))))))))Theorem e5a90.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 x17)))))))))))))) = x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x17)))))))))))))) (proof)Known e6374.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 x17)))))))))))))) = x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x17))))))))))))))Theorem c78ef.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 x17)))))))))))))) = x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x17)))))))))))))) (proof)Known ad9b7.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x0 x18 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 x18))))))))))))))) = x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 (x1 x2 (x1 x3 x18)))))))))))))))Theorem 957b7.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x0 x18 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 x18))))))))))))))) = x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 (x1 x2 (x1 x3 x18))))))))))))))) (proof)Known 366f2.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x0 x18 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 x18))))))))))))))) = x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 (x1 x2 (x1 x3 (x1 x4 x18)))))))))))))))Theorem af6e2.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x0 x18 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 x18))))))))))))))) = x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 (x1 x2 (x1 x3 (x1 x4 x18))))))))))))))) (proof)Known 7b7b5.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x0 x18 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 x18))))))))))))))) = x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 (x1 x2 (x1 x3 (x1 x4 (x1 x5 x18)))))))))))))))Theorem 2f787.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x0 x18 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 x18))))))))))))))) = x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 (x1 x2 (x1 x3 (x1 x4 (x1 x5 x18))))))))))))))) (proof)Known 2fa40.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x0 x18 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 x18))))))))))))))) = x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x18)))))))))))))))Theorem 247df.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x0 x18 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 x18))))))))))))))) = x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x18))))))))))))))) (proof)Known 11aa7.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x0 x18 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 x18))))))))))))))) = x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x18)))))))))))))))Theorem cbaa5.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x0 x18 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 x18))))))))))))))) = x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x18))))))))))))))) (proof)Known 58df9.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x0 x18 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 x18))))))))))))))) = x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x18)))))))))))))))Theorem 0b2cf.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x0 x18 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 x18))))))))))))))) = x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x18))))))))))))))) (proof)Known 80a23.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x0 x18 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 x18))))))))))))))) = x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 x18)))))))))))))))Theorem 082f9.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x0 x18 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 x18))))))))))))))) = x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 x18))))))))))))))) (proof)
|
|