current assets |
---|
474e9../ec81a.. bday: 29486 doc published by Pr4zB..Definition SubqSubq := λ x0 x1 . ∀ x2 . x2 ∈ x0 ⟶ x2 ∈ x1Param atleastpatleastp : ι → ι → οParam u3 : ιDefinition FalseFalse := ∀ x0 : ο . x0Definition notnot := λ x0 : ο . x0 ⟶ FalseParam SepSep : ι → (ι → ο) → ιDefinition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x1 ⟶ x2) ⟶ x2Definition DirGraphOutNeighbors := λ x0 . λ x1 : ι → ι → ο . λ x2 . {x3 ∈ x0|and (x2 = x3 ⟶ ∀ x4 : ο . x4) (x1 x2 x3)}Param setminussetminus : ι → ι → ιParam SingSing : ι → ιDefinition nInnIn := λ x0 x1 . not (x0 ∈ x1)Known setminusEsetminusE : ∀ x0 x1 x2 . x2 ∈ setminus x0 x1 ⟶ and (x2 ∈ x0) (nIn x2 x1)Known SepESepE : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2 ∈ Sep x0 x1 ⟶ and (x2 ∈ x0) (x1 x2)Param SetAdjoinSetAdjoin : ι → ι → ιParam UPairUPair : ι → ι → ιKnown aa241.. : ∀ x0 x1 x2 . ∀ x3 : ι → ο . x3 x0 ⟶ x3 x1 ⟶ x3 x2 ⟶ ∀ x4 . x4 ∈ SetAdjoin (UPair x0 x1) x2 ⟶ x3 x4Known SepE1SepE1 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2 ∈ Sep x0 x1 ⟶ x2 ∈ x0Known 5d098.. : ∀ x0 x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x4 : ο . x4) ⟶ (x1 = x3 ⟶ ∀ x4 : ο . x4) ⟶ (x2 = x3 ⟶ ∀ x4 : ο . x4) ⟶ atleastp u3 x0Known 6be8c.. : ∀ x0 x1 x2 . x0 ∈ SetAdjoin (UPair x0 x1) x2Known 535ce.. : ∀ x0 x1 x2 . x1 ∈ SetAdjoin (UPair x0 x1) x2Known f4e2f.. : ∀ x0 x1 x2 . x2 ∈ SetAdjoin (UPair x0 x1) x2Known neq_i_symneq_i_sym : ∀ x0 x1 . (x0 = x1 ⟶ ∀ x2 : ο . x2) ⟶ x1 = x0 ⟶ ∀ x2 : ο . x2Known SingISingI : ∀ x0 . x0 ∈ Sing x0Known FalseEFalseE : False ⟶ ∀ x0 : ο . x0Theorem c82b0.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3 ⟶ x1 x3 x2) ⟶ (∀ x2 . x2 ⊆ x0 ⟶ atleastp u3 x2 ⟶ not (∀ x3 . x3 ∈ x2 ⟶ ∀ x4 . x4 ∈ x2 ⟶ (x3 = x4 ⟶ ∀ x5 : ο . x5) ⟶ x1 x3 x4)) ⟶ ∀ x2 x3 . x2 ∈ x0 ⟶ x3 ∈ DirGraphOutNeighbors x0 x1 x2 ⟶ (x2 = x3 ⟶ ∀ x4 : ο . x4) ⟶ x1 x2 x3 ⟶ ∀ x4 . x4 ∈ setminus (DirGraphOutNeighbors x0 x1 x3) (Sing x2) ⟶ not (x1 x2 x4) (proof)Param u6 : ιTheorem 29078.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3 ⟶ x1 x3 x2) ⟶ (∀ x2 . x2 ⊆ x0 ⟶ atleastp u3 x2 ⟶ not (∀ x3 . x3 ∈ x2 ⟶ ∀ x4 . x4 ∈ x2 ⟶ (x3 = x4 ⟶ ∀ x5 : ο . x5) ⟶ x1 x3 x4)) ⟶ (∀ x2 . x2 ⊆ x0 ⟶ atleastp u6 x2 ⟶ not (∀ x3 . x3 ∈ x2 ⟶ ∀ x4 . x4 ∈ x2 ⟶ (x3 = x4 ⟶ ∀ x5 : ο . x5) ⟶ not (x1 x3 x4))) ⟶ ∀ x2 x3 . x2 ∈ x0 ⟶ x3 ∈ DirGraphOutNeighbors x0 x1 x2 ⟶ (x2 = x3 ⟶ ∀ x4 : ο . x4) ⟶ x1 x2 x3 ⟶ ∀ x4 . x4 ∈ setminus (DirGraphOutNeighbors x0 x1 x3) (Sing x2) ⟶ not (x1 x2 x4) (proof)
|
|