Search for blocks/addresses/...
Proofgold Address
address
PUTTemiEX4EXhieFzFvpkPErXd9R16H75m8
total
0
mg
-
conjpub
-
current assets
c8b4c..
/
3e2a6..
bday:
20043
doc published by
Pr4zB..
Param
nat_p
nat_p
:
ι
→
ο
Param
TwoRamseyProp_atleastp
:
ι
→
ι
→
ι
→
ο
Param
ordsucc
ordsucc
:
ι
→
ι
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Known
1f164..
:
∀ x0 x1 x2 x3 .
nat_p
x2
⟶
nat_p
x3
⟶
TwoRamseyProp_atleastp
(
ordsucc
x0
)
x1
(
ordsucc
x2
)
⟶
TwoRamseyProp_atleastp
x0
(
ordsucc
x1
)
(
ordsucc
x3
)
⟶
TwoRamseyProp_atleastp
(
ordsucc
x0
)
(
ordsucc
x1
)
(
ordsucc
(
ordsucc
(
add_nat
x2
x3
)
)
)
Param
TwoRamseyProp
TwoRamseyProp
:
ι
→
ι
→
ι
→
ο
Known
b8b19..
:
∀ x0 x1 x2 .
TwoRamseyProp_atleastp
x0
x1
x2
⟶
TwoRamseyProp
x0
x1
x2
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Known
TwoRamseyProp_atleastp_atleastp
:
∀ x0 x1 x2 x3 x4 .
TwoRamseyProp
x0
x2
x4
⟶
atleastp
x1
x0
⟶
atleastp
x3
x2
⟶
TwoRamseyProp_atleastp
x1
x3
x4
Known
atleastp_ref
:
∀ x0 .
atleastp
x0
x0
Theorem
164da..
TwoRamseyProp_bd
:
∀ x0 x1 x2 x3 .
nat_p
x2
⟶
nat_p
x3
⟶
TwoRamseyProp
(
ordsucc
x0
)
x1
(
ordsucc
x2
)
⟶
TwoRamseyProp
x0
(
ordsucc
x1
)
(
ordsucc
x3
)
⟶
TwoRamseyProp
(
ordsucc
x0
)
(
ordsucc
x1
)
(
ordsucc
(
ordsucc
(
add_nat
x2
x3
)
)
)
(proof)
Known
95eb4..
:
∀ x0 .
TwoRamseyProp_atleastp
2
x0
x0
Theorem
f0d6f..
TwoRamseyProp_2
:
∀ x0 .
TwoRamseyProp
2
x0
x0
(proof)
Definition
u1
:=
1
Definition
u2
:=
ordsucc
u1
Definition
u3
:=
ordsucc
u2
Definition
u4
:=
ordsucc
u3
Known
69b67..
add_nat_8_4
:
add_nat
8
4
=
12
Definition
u5
:=
ordsucc
u4
Definition
u6
:=
ordsucc
u5
Definition
u7
:=
ordsucc
u6
Definition
u8
:=
ordsucc
u7
Known
nat_8
nat_8
:
nat_p
8
Known
nat_4
nat_4
:
nat_p
4
Known
TwoRamseyProp_3_4_9
TwoRamseyProp_3_4_9
:
TwoRamseyProp
3
4
9
Theorem
TwoRamseyProp_3_5_14
TwoRamseyProp_3_5_14
:
TwoRamseyProp
3
5
14
(proof)
Known
TwoRamseyProp_4_4_18
TwoRamseyProp_4_4_18
:
TwoRamseyProp
4
4
18
Definition
u9
:=
ordsucc
u8
Definition
u10
:=
ordsucc
u9
Definition
u11
:=
ordsucc
u10
Definition
u12
:=
ordsucc
u11
Definition
u13
:=
ordsucc
u12
Definition
u14
:=
ordsucc
u13
Definition
u15
:=
ordsucc
u14
Definition
u16
:=
ordsucc
u15
Definition
u17
:=
ordsucc
u16
Definition
u18
:=
ordsucc
u17
Definition
u19
:=
ordsucc
u18
Definition
u20
:=
ordsucc
u19
Definition
u21
:=
ordsucc
u20
Definition
u22
:=
ordsucc
u21
Definition
u23
:=
ordsucc
u22
Definition
u24
:=
ordsucc
u23
Known
add_nat_SR
add_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
(
ordsucc
x1
)
=
ordsucc
(
add_nat
x0
x1
)
Known
nat_6
nat_6
:
nat_p
6
Known
eec07..
:
add_nat
17
6
=
23
Theorem
e7d46..
:
add_nat
u17
u7
=
u24
(proof)
Definition
u25
:=
ordsucc
u24
Known
nat_7
nat_7
:
nat_p
7
Theorem
8609e..
:
add_nat
u17
u8
=
u25
(proof)
Definition
u26
:=
ordsucc
u25
Theorem
d04d9..
:
add_nat
u17
u9
=
u26
(proof)
Definition
u27
:=
ordsucc
u26
Known
nat_9
nat_9
:
nat_p
9
Theorem
5782f..
:
add_nat
u17
u10
=
u27
(proof)
Definition
u28
:=
ordsucc
u27
Known
nat_10
nat_10
:
nat_p
10
Theorem
37f74..
:
add_nat
u17
u11
=
u28
(proof)
Definition
u29
:=
ordsucc
u28
Known
nat_11
nat_11
:
nat_p
11
Theorem
9f043..
:
add_nat
u17
u12
=
u29
(proof)
Definition
u30
:=
ordsucc
u29
Known
nat_12
nat_12
:
nat_p
12
Theorem
8d18d..
:
add_nat
u17
u13
=
u30
(proof)
Definition
u31
:=
ordsucc
u30
Definition
u32
:=
ordsucc
u31
Known
nat_17
nat_17
:
nat_p
17
Known
nat_13
nat_13
:
nat_p
13
Theorem
TwoRamseyProp_u4_u5_u32
:
TwoRamseyProp
u4
u5
u32
(proof)
Known
46dcf..
:
∀ x0 x1 x2 x3 .
atleastp
x2
x3
⟶
TwoRamseyProp
x0
x1
x2
⟶
TwoRamseyProp
x0
x1
x3
Param
exp_nat
exp_nat
:
ι
→
ι
→
ι
Known
e089c..
:
exp_nat
2
5
=
32
Param
equip
equip
:
ι
→
ι
→
ο
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Known
293d3..
:
∀ x0 .
nat_p
x0
⟶
equip
(
prim4
x0
)
(
exp_nat
2
x0
)
Known
nat_5
nat_5
:
nat_p
5
Theorem
TwoRamseyProp_4_5_Power_5
TwoRamseyProp_4_5_Power_5
:
TwoRamseyProp
4
5
(
prim4
5
)
(proof)
Definition
u33
:=
ordsucc
u32
Definition
u34
:=
ordsucc
u33
Definition
u35
:=
ordsucc
u34
Definition
u36
:=
ordsucc
u35
Definition
u37
:=
ordsucc
u36
Definition
u38
:=
ordsucc
u37
Definition
u39
:=
ordsucc
u38
Definition
u40
:=
ordsucc
u39
Definition
u41
:=
ordsucc
u40
Definition
u42
:=
ordsucc
u41
Definition
u43
:=
ordsucc
u42
Definition
u44
:=
ordsucc
u43
Definition
u45
:=
ordsucc
u44
Definition
u46
:=
ordsucc
u45
Definition
u47
:=
ordsucc
u46
Definition
u48
:=
ordsucc
u47
Definition
u49
:=
ordsucc
u48
Definition
u50
:=
ordsucc
u49
Definition
u51
:=
ordsucc
u50
Definition
u52
:=
ordsucc
u51
Definition
u53
:=
ordsucc
u52
Definition
u54
:=
ordsucc
u53
Definition
u55
:=
ordsucc
u54
Definition
u56
:=
ordsucc
u55
Definition
u57
:=
ordsucc
u56
Definition
u58
:=
ordsucc
u57
Definition
u59
:=
ordsucc
u58
Definition
u60
:=
ordsucc
u59
Definition
u61
:=
ordsucc
u60
Definition
u62
:=
ordsucc
u61
Definition
u63
:=
ordsucc
u62
Definition
u64
:=
ordsucc
u63
Definition
u65
:=
ordsucc
u64
Known
nat_0
nat_0
:
nat_p
0
Known
add_nat_0R
add_nat_0R
:
∀ x0 .
add_nat
x0
0
=
x0
Theorem
10cab..
:
add_nat
u31
u1
=
u32
(proof)
Known
nat_1
nat_1
:
nat_p
1
Theorem
f92a1..
:
add_nat
u31
u2
=
u33
(proof)
Known
nat_2
nat_2
:
nat_p
2
Theorem
511f7..
:
add_nat
u31
u3
=
u34
(proof)
Known
nat_3
nat_3
:
nat_p
3
Theorem
d826c..
:
add_nat
u31
u4
=
u35
(proof)
Theorem
2fe22..
:
add_nat
u31
u5
=
u36
(proof)
Theorem
f4e1a..
:
add_nat
u31
u6
=
u37
(proof)
Theorem
bf403..
:
add_nat
u31
u7
=
u38
(proof)
Theorem
b109e..
:
add_nat
u31
u8
=
u39
(proof)
Theorem
701cc..
:
add_nat
u31
u9
=
u40
(proof)
Theorem
5bff0..
:
add_nat
u31
u10
=
u41
(proof)
Theorem
c4ffa..
:
add_nat
u31
u11
=
u42
(proof)
Theorem
d9ac1..
:
add_nat
u31
u12
=
u43
(proof)
Theorem
33bf0..
:
add_nat
u31
u13
=
u44
(proof)
Theorem
acfb0..
:
add_nat
u31
u14
=
u45
(proof)
Known
nat_14
nat_14
:
nat_p
14
Theorem
e721a..
:
add_nat
u31
u15
=
u46
(proof)
Known
nat_15
nat_15
:
nat_p
15
Theorem
54b8d..
:
add_nat
u31
u16
=
u47
(proof)
Known
nat_16
nat_16
:
nat_p
16
Theorem
0e651..
:
add_nat
u31
u17
=
u48
(proof)
Theorem
5af7c..
:
add_nat
u31
u18
=
u49
(proof)
Known
86c65..
:
nat_p
u18
Theorem
20c1f..
:
add_nat
u31
u19
=
u50
(proof)
Known
d9e2e..
:
nat_p
u19
Theorem
a3ba7..
:
add_nat
u31
u20
=
u51
(proof)
Known
2669c..
:
nat_p
u20
Theorem
b4a35..
:
add_nat
u31
u21
=
u52
(proof)
Known
e8a0a..
:
nat_p
u21
Theorem
64359..
:
add_nat
u31
u22
=
u53
(proof)
Known
daa33..
:
nat_p
u22
Theorem
1d45f..
:
add_nat
u31
u23
=
u54
(proof)
Known
b73b8..
:
nat_p
u23
Theorem
82374..
:
add_nat
u31
u24
=
u55
(proof)
Known
73189..
:
nat_p
u24
Theorem
28932..
:
add_nat
u31
u25
=
u56
(proof)
Known
d5180..
:
nat_p
u25
Theorem
259e4..
:
add_nat
u31
u26
=
u57
(proof)
Known
24234..
:
nat_p
u26
Theorem
bf663..
:
add_nat
u31
u27
=
u58
(proof)
Known
e06fe..
:
nat_p
u27
Theorem
3c2af..
:
add_nat
u31
u28
=
u59
(proof)
Known
5c78e..
:
nat_p
u28
Theorem
3301d..
:
add_nat
u31
u29
=
u60
(proof)
Known
7e1a8..
:
nat_p
u29
Theorem
510c8..
:
add_nat
u31
u30
=
u61
(proof)
Known
a9ae2..
:
nat_p
u30
Theorem
6cf36..
:
add_nat
u31
u31
=
u62
(proof)
Known
74918..
:
nat_p
u31
Known
0d7c6..
:
∀ x0 x1 x2 .
TwoRamseyProp
x0
x1
x2
⟶
TwoRamseyProp
x1
x0
x2
Theorem
TwoRamseyProp_u5_u5_u64
:
TwoRamseyProp
u5
u5
u64
(proof)
Theorem
73823..
:
add_nat
u31
u32
=
u63
(proof)
Known
add_nat_SL
add_nat_SL
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
add_nat
(
ordsucc
x0
)
x1
=
ordsucc
(
add_nat
x0
x1
)
Known
1f846..
:
nat_p
u32
Theorem
304b9..
:
add_nat
u32
u32
=
u64
(proof)
Param
mul_nat
mul_nat
:
ι
→
ι
→
ι
Known
add_nat_1_1_2
add_nat_1_1_2
:
add_nat
1
1
=
2
Known
mul_add_nat_distrR
mul_add_nat_distrR
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
∀ x2 .
nat_p
x2
⟶
mul_nat
(
add_nat
x0
x1
)
x2
=
add_nat
(
mul_nat
x0
x2
)
(
mul_nat
x1
x2
)
Known
f11bb..
:
∀ x0 .
nat_p
x0
⟶
mul_nat
1
x0
=
x0
Theorem
6cce6..
:
∀ x0 .
nat_p
x0
⟶
mul_nat
u2
x0
=
add_nat
x0
x0
(proof)
Known
caaf4..
exp_nat_S
:
∀ x0 x1 .
nat_p
x1
⟶
exp_nat
x0
(
ordsucc
x1
)
=
mul_nat
x0
(
exp_nat
x0
x1
)
Theorem
337ce..
:
exp_nat
u2
u6
=
u64
(proof)
Theorem
TwoRamseyProp_5_5_Power_6
TwoRamseyProp_5_5_Power_6
:
TwoRamseyProp
5
5
(
prim4
6
)
(proof)
previous assets