current assets |
---|
13c1e../2e7b2.. bday: 35048 doc published by PrKYB..Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x1 ⟶ x2) ⟶ x2Known prop_ext_2prop_ext_2 : ∀ x0 x1 : ο . (x0 ⟶ x1) ⟶ (x1 ⟶ x0) ⟶ x0 = x1Known andIandI : ∀ x0 x1 : ο . x0 ⟶ x1 ⟶ and x0 x1Theorem 27155.. : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ∈ x0) ⟶ ∀ x2 : ι → ι → ι . (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ x1 x3 x4 = x2 x3 x4) ⟶ and (∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x2 (x2 x4 x5) x6 = x2 x4 (x2 x5 x6)) (∀ x4 : ο . (∀ x5 . and (x5 ∈ x0) (∀ x6 . x6 ∈ x0 ⟶ and (x2 x6 x5 = x6) (x2 x5 x6 = x6)) ⟶ x4) ⟶ x4) = and (∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x1 (x1 x4 x5) x6 = x1 x4 (x1 x5 x6)) (∀ x4 : ο . (∀ x5 . and (x5 ∈ x0) (∀ x6 . x6 ∈ x0 ⟶ and (x1 x6 x5 = x6) (x1 x5 x6 = x6)) ⟶ x4) ⟶ x4) (proof)Definition FalseFalse := ∀ x0 : ο . x0Definition notnot := λ x0 : ο . x0 ⟶ FalseDefinition MetaCat_initial_pinitial_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 . λ x5 : ι → ι . and (x0 x4) (∀ x6 . x0 x6 ⟶ and (x1 x4 x6 (x5 x6)) (∀ x7 . x1 x4 x6 x7 ⟶ x7 = x5 x6))Param pack_bpack_b : ι → CT2 ιDefinition struct_bstruct_b := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . x4 ∈ x2 ⟶ ∀ x5 . x5 ∈ x2 ⟶ x3 x4 x5 ∈ x2) ⟶ x1 (pack_b x2 x3)) ⟶ x1 x0Param unpack_b_ounpack_b_o : ι → (ι → (ι → ι → ι) → ο) → οDefinition Monoidstruct_b_monoid := λ x0 . and (struct_b x0) (unpack_b_o x0 (λ x1 . λ x2 : ι → ι → ι . and (∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ ∀ x5 . x5 ∈ x1 ⟶ x2 (x2 x3 x4) x5 = x2 x3 (x2 x4 x5)) (∀ x3 : ο . (∀ x4 . and (x4 ∈ x1) (∀ x5 . x5 ∈ x1 ⟶ and (x2 x5 x4 = x5) (x2 x4 x5 = x5)) ⟶ x3) ⟶ x3)))Param MagmaHomHom_struct_b : ι → ι → ι → οParam struct_idstruct_id : ι → ιParam lamSigma : ι → (ι → ι) → ιParam apap : ι → ι → ιDefinition lam_complam_comp := λ x0 x1 x2 . lam x0 (λ x3 . ap x1 (ap x2 x3))Definition struct_compstruct_comp := λ x0 x1 x2 . lam_comp (ap x0 0)Known unpack_b_o_equnpack_b_o_eq : ∀ x0 : ι → (ι → ι → ι) → ο . ∀ x1 . ∀ x2 : ι → ι → ι . (∀ x3 : ι → ι → ι . (∀ x4 . x4 ∈ x1 ⟶ ∀ x5 . x5 ∈ x1 ⟶ x2 x4 x5 = x3 x4 x5) ⟶ x0 x1 x3 = x0 x1 x2) ⟶ unpack_b_o (pack_b x1 x2) x0 = x0 x1 x2Param ordsuccordsucc : ι → ιParam SNoSNo : ι → οParam mul_SNomul_SNo : ι → ι → ιParam PiPi : ι → (ι → ι) → ιDefinition setexpsetexp := λ x0 x1 . Pi x1 (λ x2 . x0)Known 2cd8d..Hom_struct_b_pack : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 . MagmaHom (pack_b x0 x2) (pack_b x1 x3) x4 = and (x4 ∈ setexp x1 x0) (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ap x4 (x2 x6 x7) = x3 (ap x4 x6) (ap x4 x7))Known neq_0_1neq_0_1 : 0 = 1 ⟶ ∀ x0 : ο . x0Known betabeta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2 ∈ x0 ⟶ ap (lam x0 x1) x2 = x1 x2Known lam_Pilam_Pi : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3 ∈ x0 ⟶ x2 x3 ∈ x1 x3) ⟶ lam x0 x2 ∈ Pi x0 x1Known In_1_2In_1_2 : 1 ∈ 2Known mul_SNo_oneLmul_SNo_oneL : ∀ x0 . SNo x0 ⟶ mul_SNo 1 x0 = x0Known SNo_1SNo_1 : SNo 1Known In_0_2In_0_2 : 0 ∈ 2Known mul_SNo_zeroLmul_SNo_zeroL : ∀ x0 . SNo x0 ⟶ mul_SNo 0 x0 = 0Known SNo_0SNo_0 : SNo 0Known pack_struct_b_Ipack_struct_b_I : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ∈ x0) ⟶ struct_b (pack_b x0 x1)Known mul_SNo_assocmul_SNo_assoc : ∀ x0 x1 x2 . SNo x0 ⟶ SNo x1 ⟶ SNo x2 ⟶ mul_SNo x0 (mul_SNo x1 x2) = mul_SNo (mul_SNo x0 x1) x2Known mul_SNo_oneRmul_SNo_oneR : ∀ x0 . SNo x0 ⟶ mul_SNo x0 1 = x0Known cases_2cases_2 : ∀ x0 . x0 ∈ 2 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 1 ⟶ x1 x0Param omegaomega : ιKnown omega_SNoomega_SNo : ∀ x0 . x0 ∈ omega ⟶ SNo x0Param nat_pnat_p : ι → οKnown nat_p_omeganat_p_omega : ∀ x0 . nat_p x0 ⟶ x0 ∈ omegaKnown nat_p_transnat_p_trans : ∀ x0 . nat_p x0 ⟶ ∀ x1 . x1 ∈ x0 ⟶ nat_p x1Known nat_2nat_2 : nat_p 2Theorem 87240.. : not (∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_initial_p Monoid MagmaHom struct_id struct_comp x1 x3 ⟶ x2) ⟶ x2) ⟶ x0) ⟶ x0) (proof)Definition MetaCat_equalizer_pequalizer_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 x7 x8 x9 . λ x10 : ι → ι → ι . and (and (and (and (and (and (and (x0 x4) (x0 x5)) (x1 x4 x5 x6)) (x1 x4 x5 x7)) (x0 x8)) (x1 x8 x4 x9)) (x3 x8 x4 x5 x6 x9 = x3 x8 x4 x5 x7 x9)) (∀ x11 . x0 x11 ⟶ ∀ x12 . x1 x11 x4 x12 ⟶ x3 x11 x4 x5 x6 x12 = x3 x11 x4 x5 x7 x12 ⟶ and (and (x1 x11 x8 (x10 x11 x12)) (x3 x11 x8 x4 x9 (x10 x11 x12) = x12)) (∀ x13 . x1 x11 x8 x13 ⟶ x3 x11 x8 x4 x9 x13 = x12 ⟶ x13 = x10 x11 x12))Definition MetaCat_equalizer_struct_pequalizer_constr_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 : ι → ι → ι → ι → ι . λ x6 : ι → ι → ι → ι → ι → ι → ι . ∀ x7 x8 . x0 x7 ⟶ x0 x8 ⟶ ∀ x9 x10 . x1 x7 x8 x9 ⟶ x1 x7 x8 x10 ⟶ MetaCat_equalizer_p x0 x1 x2 x3 x7 x8 x9 x10 (x4 x7 x8 x9 x10) (x5 x7 x8 x9 x10) (x6 x7 x8 x9 x10)Known pack_b_0_eq2pack_b_0_eq2 : ∀ x0 . ∀ x1 : ι → ι → ι . x0 = ap (pack_b x0 x1) 0Known ap_Piap_Pi : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2 ∈ Pi x0 x1 ⟶ x3 ∈ x0 ⟶ ap x2 x3 ∈ x1 x3Known and3Iand3I : ∀ x0 x1 x2 : ο . x0 ⟶ x1 ⟶ x2 ⟶ and (and x0 x1) x2Known In_0_1In_0_1 : 0 ∈ 1Known cases_1cases_1 : ∀ x0 . x0 ∈ 1 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 x0Theorem e6a94.. : not (∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p Monoid MagmaHom struct_id struct_comp x1 x3 x5 ⟶ x4) ⟶ x4) ⟶ x2) ⟶ x2) ⟶ x0) ⟶ x0) (proof)Definition MetaCat_pullback_ppullback_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 x7 x8 x9 x10 x11 . λ x12 : ι → ι → ι → ι . and (and (and (and (and (and (and (and (and (x0 x4) (x0 x5)) (x0 x6)) (x1 x4 x6 x7)) (x1 x5 x6 x8)) (x0 x9)) (x1 x9 x4 x10)) (x1 x9 x5 x11)) (x3 x9 x4 x6 x7 x10 = x3 x9 x5 x6 x8 x11)) (∀ x13 . x0 x13 ⟶ ∀ x14 . x1 x13 x4 x14 ⟶ ∀ x15 . x1 x13 x5 x15 ⟶ x3 x13 x4 x6 x7 x14 = x3 x13 x5 x6 x8 x15 ⟶ and (and (and (x1 x13 x9 (x12 x13 x14 x15)) (x3 x13 x9 x4 x10 (x12 x13 x14 x15) = x14)) (x3 x13 x9 x5 x11 (x12 x13 x14 x15) = x15)) (∀ x16 . x1 x13 x9 x16 ⟶ x3 x13 x9 x4 x10 x16 = x14 ⟶ x3 x13 x9 x5 x11 x16 = x15 ⟶ x16 = x12 x13 x14 x15))Definition MetaCat_pullback_struct_ppullback_constr_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 x4 x5 x6 : ι → ι → ι → ι → ι → ι . λ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . ∀ x8 x9 x10 . x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ ∀ x11 x12 . x1 x8 x10 x11 ⟶ x1 x9 x10 x12 ⟶ MetaCat_pullback_p x0 x1 x2 x3 x8 x9 x10 x11 x12 (x4 x8 x9 x10 x11 x12) (x5 x8 x9 x10 x11 x12) (x6 x8 x9 x10 x11 x12) (x7 x8 x9 x10 x11 x12)Known and4Iand4I : ∀ x0 x1 x2 x3 : ο . x0 ⟶ x1 ⟶ x2 ⟶ x3 ⟶ and (and (and x0 x1) x2) x3Theorem e5932.. : not (∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_struct_p Monoid MagmaHom struct_id struct_comp x1 x3 x5 x7 ⟶ x6) ⟶ x6) ⟶ x4) ⟶ x4) ⟶ x2) ⟶ x2) ⟶ x0) ⟶ x0) (proof)Param MetaAdjunction_strictMetaAdjunction_strict : (ι → ο) → (ι → ι → ι → ο) → (ι → ι) → (ι → ι → ι → ι → ι → ι) → (ι → ο) → (ι → ι → ι → ο) → (ι → ι) → (ι → ι → ι → ι → ι → ι) → (ι → ι) → (ι → ι → ι → ι) → (ι → ι) → (ι → ι → ι → ι) → (ι → ι) → (ι → ι) → οParam TrueTrue : οParam HomSetSetHom : ι → ι → ι → οDefinition lam_idlam_id := λ x0 . lam x0 (λ x1 . x1)Known 80cab..MetaCatSet_initial : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_initial_p (λ x4 . True) HomSet (λ x4 . lam x4 (λ x5 . x5)) (λ x4 x5 x6 x7 x8 . lam x4 (λ x9 . ap x7 (ap x8 x9))) x1 x3 ⟶ x2) ⟶ x2) ⟶ x0) ⟶ x0Known 09501.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι . ∀ x12 x13 : ι → ι . MetaAdjunction_strict x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 ⟶ ∀ x14 . ∀ x15 : ι → ι . MetaCat_initial_p x0 x1 x2 x3 x14 x15 ⟶ ∀ x16 : ο . (∀ x17 : ι → ι . MetaCat_initial_p x4 x5 x6 x7 (x8 x14) x17 ⟶ x16) ⟶ x16Theorem 62ee6.. : not (∀ x0 : ο . (∀ x1 : ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι . MetaAdjunction_strict (λ x8 . True) HomSet lam_id (λ x8 x9 x10 . lam_comp x8) Monoid MagmaHom struct_id struct_comp x1 x3 (λ x8 . ap x8 0) (λ x8 x9 x10 . x10) x5 x7 ⟶ x6) ⟶ x6) ⟶ x4) ⟶ x4) ⟶ x2) ⟶ x2) ⟶ x0) ⟶ x0) (proof)
|
|